ASX: CLZ ACN 119 484 016

ASX Announcement

21 March 2017

CLASSIC ACQUIRES ADDITIONAL FORRESTANIA TENEMENTS – GROWS RESOURCE AT FGP TO 240,650 oz Au

Classic builds its landholding and JORC Resource Base at Forrestania

Highlights:

- Binding agreement signed to acquire additional 4kmsq of highly prospective tenements at FGP.
- Existing ~24K ounce Mineral Resource reported and classified in accordance with JORC (2012), with strong exploration upside.
- Acquisition increases Classic's Mineral Resources at FGP to 240K ounce Au.
- Similar geological setting to the 2Moz Bounty Gold Mine and Kidman's Blue Vein gold mine.
- Expands Classics footprint in one of Australia's most prominent regions for lithium and gold mining.
- Value accretive asset which can be incorporated into development.

Classic Minerals Limited (Classic or the Company) (ASX Code: CLZ) is pleased to announce that it has now signed an agreement in respect to acquiring 100% of two tenements in the Forrestania region, which are contiguous to Classic's Forrestania Gold Project (FGP).

The tenements host the "Lady Lila" (formerly Violet Haze) gold deposit which has a Mineral Resource of 541kt @ 1.38g/t for 24,000 oz Au, reported and classified in accordance with JORC (2012).

The Lady Lila Tenements are registered in the name of Fortuna SL Mining Pty Ltd. Classic has acquired 100% of the interest in the Lady Lila Tenements. For the avoidance of doubt Classic Minerals Ltd is acquiring a 100% interest in gold and non-gold rights on the Lady Lila Tenements including but not limited to nickel, lithium and other metals.

Lady Lila is situated 4km east of Lady Ada and is hosted by a chert/banded iron formation within the younger metasedimentary central zone. The previous drilling is shallow (approx. 50m depth testing) and generally intercepts the mineralised zone only two-three times per section. Additional drilling is strongly recommended and is required to test the orientation, and down dip extension of the mineralisation. The mineralisation at its strongest is 10m wide, over 400m long, and grades between 2.0-5.0g/t Au. A cross section of Lady Lila is displayed in Figure I. The present gold mineralisation models indicate a steep easterly dip; the any future drilling should plan to test a possible vertical dip, as gold deposits in the area have been known to steepen at depth (e.g., Blue Vein held by Kidman Resources). The current drilling commonly fails to drill deep enough to adequately test the steep easterly dip (some holes even terminate in mineralisation), and are insufficient to judge Lady Lila's prospectivity due to three factors:

- 1) there is well-document transported cover which masks the top 10-20m of deposits in the area (e.g., Lady Ada), potentially obscuring the along strike continuations;
- 2) a zone of gold depletion which may occur under-representing a good deposit (e.g., Bounty Gold Mine);

21 March 2017

3) the natural variability of gold distributions in BIF hosted systems from zones of high grade to zones of low grade (depending on proximity to Au fluid fault pathway) may provide discouraging results in some RLs and exceptions results in others (e.g., Bounty, Blue vein).

Lady Lila contains a significant strike extent, high and low grade intercepts, is weakly drilled and requires additional exploration.

Figure 1: Cross Section Looking North – Lady Lila

The tenements are still in the application stage and are to be transferred to Classic upon grant (subject to Ministerial consent). The acquisition is subject to the tenements successfully proceeding through to being granted and then transfer/registration in Classic's name. A search of the DMP's public database (Mineral Titles Online) shows that the tenement applications have met compliance tasks and are in the Native Title Advertising period which is scheduled to end on the 8th of April 2017. Classic expects that the Lady Lia tenements will be granted shortly thereafter.

Managing Director Mr Justin Doutch stated:

Classic is very pleased to have entered into the agreement to acquire the Lady Lila tenements and valuable technical data. We believe there is significant scope to add to resource ounces and delineate another significant gold deposit similar in size to Blue Vein or Bounty – the similarities in geology are highly encouraging. In addition to the gold mineralisation, Classic's field reconnaissance has also resulted in finding some outcropping pegmatites which may be prospective for lithium. We will be drill testing this at the earliest opportunity and will keep the market appraised of our exploration strategy and results. At this stage, the intent is to delineate a viable UG gold mine that can be incorporated into the current FGP scoping study.

A lot of valuable technical and geological work has been completed on the FGP by various holders since the discovery of Lady Ada and Lady Magdalene in the late 1990s, including multiple resource estimations and reiterations of resource models as geological understanding increased. Key historic resource and reserve statements include those

21 March 2017

completed by Forrestania Gold NL in 1999; Viceroy in 2000; Sons of Gwalia in 2002 and 2003; and St Barbara Mines in 2007. After review of the data, a new Mineral Resource estimation, reported in compliance with the JORC Code (2012), was carried out in 2016 by Cadre Geology and Mining Pty Ltd ("Cadre"). The current post-mining Mineral Resource for Lady Ada (Blue Haze), Lady Magdalene (Red Haze) and Lady Lila (Violet Haze) is tabulated below in Appendix A. Additional technical detail on the Mineral Resource estimation is provided, further in the text below and in the attached JORC Table I – you will see that this takes Classic JORC resource to 240,650 ounces of Gold.

	Indicated			Inferred		
Prospect	Tonnes	Grade (Au g/t)	Ounces Au	Tonnes	Grade (Au g/t)	Ounces Au
Lady Ada	283,500	1.78	16,200	260,000	2.2	18,750
Lady Magdalene	1,828,500	1.08	63,700	2,450,000	1.5	118,000
Lady Lila	-	-	-	541,000	1.38	24,000
Total	2,112,000	1.17	79,900	3,251,000	1.53	160,750

Notes

1. The Mineral Resource is classified in accordance with JORC, 2012 edition

- 2. The effective date of the mineral resource estimate is 31 December 2016.
- 3. The mineral resource is contained within FGP and Lady Lila tenements
- 4. Estimates are rounded to reflect the level of confidence in these resources at the present time.
- 5. The mineral resource is reported at 0.5 g/t Au cut-off grade
- 6. Depletion of the resource from historic open pit mining has been taken into account

To date, CLZ has not carried out any drilling or ground-disturbing activities – its project due diligence has been based upon existing datasets. A review of publicly available drill hole databases (which can be accessed via the WA Department of Mines and Petroleum website) has assisted CLZ in planning its proposed exploration efforts.¹

Historical Exploration Work

A WAMEX search revealed that a substantial amount of historical drilling had been completed and the prospect known as Lady Lila (formerly Violet Haze).

The historical review of Violet Haze has revealed the following:

- M77/204 was applied for by Joint Venture (Mt Hope JV) partners Aztec Mining Company Ltd and Forrestania Gold NL, on the 30th April 1987 and granted on the 29th June 1988.
- In 1990 (through the Mt Hope JV) the following work was completed: aeromagnetics, ground magnetics, auger soil sampling, RAB & RC (WR008-10, 024) drilling.
- In 1993 (through the Mt Hope JV) RAB drilling and six RC holes (WRP069-072, 079-80) were completed at Violet Haze. Additionally both BLEG (62 samples, -10#) and lag (47 samples, ~200g) sampling was completed south of the Violet Haze Prospect and identified an anomalous trend (max 26.9ppb Au). The southern trend was followed up by auger sampling (max 95ppb Au) and then RAB drilling.
- In 1997 Forrestania Gold NL completed additional RC drilling (WRP161-185) at Violet Haze (note tenement now M77/813).

¹ Table 1 contains results from historic drilling undertaken at Lady Lila and reported in this announcement. Assays were undertaken utilising fire assay technique.

21 March 2017

- In 1998-1999 Forrestania Gold NL completed RAB drilling (FVHR001-037) south of Violet Haze (M77/560) with no significant results.
- In 2002 Sons of Gwalia purchased the tenement (M77/813) from Bounty Pty Ltd and they surrendered the
 tenement in 2004. No work was completed by SGW. The digital data for the Violet Haze drilling now
 available through WAMEX comes from the SGW surrender report; it's uncertain whether SGW digitally
 captured the previous drilling (Aztec/Forrestania Gold) but the fact that the lithology codes belong to SGW
 it is likely it was digitised by SGW. This digital data has been imported to generate cross- sections included in
 this memo; limited validation has been completed by comparing cross-sectional gold values from historical
 cross sections included in the WAMEX ATR's which showed identical values.
- The gold mineralisation at Violet Haze is associated with a strongly weathered, north- south trending, east dipping unit of Fe-rich garnetiferous graphitic sediment with moderate quartz veining (5-10%). The garnetiferous unit sits within a psammo-pelitic sequence of sediments together with minor intercalated BIF and chert horizons. Some gold intercepts have associated minor sulphides and/or ex-sulphide (gossan) noted in the drill logs.

Hole ID	Northing	Easting	Dip	Azi	From	То	Interval	Au
					(m)	(m)		(g/t)
WRP024	6431056	755576	-60	270	50	55	5	3.1
WR629	6430156	755604	-60	270	42	54	12	1.8
WRP072	6430156	755619	-60	270	50	73	23	0.64
WR602	6430056	755595	-60	270	10	20	10	1.37
WRP172	6430057	755606	-60	270	14	36	22	0.62
WR601	6430056	755614	-60	270	33	39	6	1.5
WRP173	6430057	755620	-60	270	55	60	5	4.83
WRP071	6430056	755629	-60	270	61	70	9	1.3
WRP169	6430007	755626	-60	270	50	66	16	1.34
WRP170	6430007	755645	-60	270	71	76	5	1.17
WRP167	6429957	755625	-60	270	20	38	18	I
WR624	6429956	755636	-60	270	36	50	14	0.38
WRP168	6429958	755640	-60	270	63	75	12	0.86
WRP070	6429956	755651	-60	270	71	85	14	0.81
WRP165	6429907	755640	-60	270	45	65	20	1.15
WRP166	6429907	755659	-60	270	77	80	3	1.38
WRP079	6429856	755633	-60	270	30	45	15	3.2
WR616	6429856	755635	-60	270	42	46	4	9.5
WRP069	6429856	755645	-60	270	51	65	14	2.59
WRP080	6429856	755657	-60	270	68	93	23	1.22
WRP162	6429807	755655	-60	270	59	82	23	0.89

• Mineralisation is currently open along strike and at depth.

Table 1: Historical Violet Haze Significant intercepts (0.1g/t Au lower cut)

21 March 2017

Lady Lila Tenements (outlined in red) Shown alongside key FGP tenements (refer announcement dated 14 March 2017)

21 March 2017

Lady Lila Tenements (in red) Airborne Geophysics with Previous Drill Collars Overlain

In compliance with the requirements of the ASX listing rules (section 5.8), the following information provides further technical detail on the Mineral Resource as discussed in this announcement:

21 March 2017

Geology and Geological Interpretation

Regional Geology

The Wattle Rocks deposits occur at the northern end of the Forrestania Greenstone belt, the southern extension of the north-south trending Southern Cross Greenstone belt, a 300 km long, 40 km wide supracrustal belt, bounded by Archaean granitoid/gneiss and intruded by less deformed granite/pegmatite and cut by east-trending Proterozoic doleritic dykes.

The Forrestania Greenstone belt comprises a thick volcanic pile overlain by psammitic/pelitic schists that form a large, regionally north-plunging synclinal structure. The Wattle Rocks deposits are located on the northwestern limb of this regional scale syncline and are similar to other moderate tonnage lateritic/supergene gold deposits that strike between WNW and NE and dip shallowly to the east or southeast, on the western edge of the greenstone belt.

Prospect geology

Geological interpretation indicates that the general stratigraphy consists of metasediments, BIF's and cherts to the east of the tenement, overlying an older sequence of metamorphosed komatiitic and high-magnesian basalts to the west. Black shales/pelites occur as small interbedded units throughout the stratigraphy, which dips gently to the east (10-35°) and strikes N-S, bending in a NNW direction in the far north of the tenement.

An Archaean-aged quartz dolerite unit (informally the 'Wattle Rocks Dolerite') is emplaced along a contact between high-MgO basalt to the west and low-MgO ultramafic to the east, in the western part of the tenement and is the host rock for the mineralisation. Strongly magnetic Proterozoic dolerite dykes cross-cut the stratigraphy in an east-west direction, splaying to the ENE, following fault directions interpreted from the aeromagnetics. A number of narrow shear zones lie subparallel to the shallow-dipping metasediment-mafic contact within the host stratigraphy and are important sites and conduits for the observed mineralisation.

Structurally, the Wattle Rocks area is quite complex and is positioned near the intersection of several major breakages and flexures in the regional stratigraphy in this part of the Forrestania Greenstone belt. Numerous shear zones are evident throughout the area, particularly at changes of rock stratigraphy where there are rheological differences. Narrow, stacked, flat-dipping shear zones are evident within the quartz dolerite unit and may have resulted from thrusting of the younger sedimentary sequence over the mafic package from east to west. A similar model is predicted for Van Uden (10 km northwards) where mineralised quartz veins appear to 'stack' through a host ferruginous metasediment.

Sampling and Sub-sampling Techniques

All RC drill samples for assaying were generated via an RC hammer, but for early holes it is not known whether this was a face-sampling or conventional hammer. Samples are presumed to have passed through a cyclone on the drill rig and a riffle splitter to provide a sample for analysis. The majority of RC holes were sampled as one-metre composites.

Recoveries from the drilling are not known, but visual inspection of plastic PVC sample bags in the field indicate that recoveries were probably good. Recoveries from the recent RC drilling programs were excellent due to an auxiliary booster being used to keep samples dry.

One metre downhole composited sample points (with appropriate top cuts) were used in all resource estimations.

21 March 2017

Drilling Techniques

The deposit has been drilled using a combination of RAB and RC drilling. All RC drill samples for assaying were generated via an RC hammer, but for early holes it is not known whether this was a face-sampling or conventional hammer. Samples are presumed to have passed through a cyclone on the drill rig and a riffle splitter to provide a sample for analysis. The majority of RC holes were sampled as one-metre composites. Recoveries from the more recent RC drilling programmes were reported as "excellent" due to an auxiliary booster being used to keep samples dry.

Resource Classification

Review of the drill hole database identified a number of areas of concern. While these were not necessarily so significant as to warrant the exclusion of the data altogether, they do have an impact on the assignment of resource confidence. Key attributes affecting the resource confidence can be summarised as: the minor discrepancies between hard copy assays and those listed in the respective databases; uncertainty regarding true collar locations; the assignment of nominal elevations to collar data; the absence of a detailed topographic surface; and the absence of any QC data for analysis.

Sample Analysis Method

All assays prior to the RC resource drilling at Lady Lila, appear to have generated by Fire Assaying techniques (typically FA50 method – 50g sample split). This method gives total gold content regardless of metallurgical considerations. The recent RC work was analysed using the CLASS2 (cyanide accelerated leachwell analysis – 200g sample split). No diamond drilling has been undertaken at the deposit. Inter-laboratory checks were undertaken on some duplicate field samples from the recent RC drilling, but no checks on the original pulped samples have been completed at this stage.

Estimation Methodology

The resource was estimated using Ordinary Kriging where variograms had been successfully obtained, and via inverse distanced to the power of two (ID2) in other prospects. In all cases an ellipsoid search was employed. Refinement of the minimum and maximum samples for estimation was completed following execution of a kriging neighborhood analysis (KNA). The estimation parameters by prospect and deposit are presented in the following tables. Estimates were run on both the raw and cut composite data in order to assess the impact of the top-cut on the final resource value.

Cut-off Grade

The Mineral Resource is reported at a cut-off grade of 0.5 g/t Au, which is considered appropriate for deposits of this nature (e.g. open pit, shearzone hosted gold).

Key Terms of Agreement

21 March 2017

Classic and the Vendor (Fortuna SL Mining Pty Ltd) have entered a binding Heads of Agreement (HOA) for the sale and purchase of the Vendor's interest in tenement applications P77/4325 and P77/4326. Under the HOA, Classic will issue to the Vendor 40,000,000 ordinary Classic Shares, this will bring the Vendors interest in Classic to less than 5%. In addition to the share allotment, Classic will grant a 2.5% NSR royalty on production from P77/4325 and P77/4326 (or any replacement tenements). Completion of the sale of the project and any regulatory approvals is expected to occur over the next two months. The parties have also agreed to negotiate in good faith the Formal Agreement with a view to executing the sale as soon as possible.

The acquisition includes 100% of the rights in the following pending tenements: P77/4325 and P77/4326.

Consideration payable by Classic to the Vendor consists of:

- I. The issue and allotment of 40,000,000 of fully paid ordinary shares in the capital of CLZ, not exceeding 5% of issued capital of CLZ (issued under Listing Rule 7.1).
- II. 2.5% Net Smelter Royalty on gold production at the Lady Lila tenements.

Conditions Precedent

- I. Vendor obtaining any necessary consents and waivers to proceed with the transaction, including entry into any assignment or novation deeds with any required third parties;
- II. Tenements being granted to the Vendor by the DMP;
- III. Ministerial Consent to Transfer the Tenements to Classic.

Approvals

- I. Any necessary governmental consents and approvals to the matters set out in the Agreement under the Mining Act.
- II. Classic shareholders providing all required approvals for the transaction. An EGM will be called as soon as practicable.

Timing of Acquisition

I. Classic expects that the transaction will be completed within 60 days.

On behalf of the board Justin Doutch Managing Director

Classic Minerals Limited

Phone:	(08) 6305 0221
Address:	71 Furniss Road, Landsdale WA 6065
Postal:	PO Box 487, Osborne Park WA 6917
Website:	www.classicminerals.com.au
Email:	<pre>contact@classicminerals.com.au</pre>

21 March 2017

Competent Persons Statement

The information contained in this report that relates to Mineral resources and Exploration Results is based on information compiled by Edward S. K. Fry, a Competent Person who is a Member of the Australasian Institute of Mining and Metallurgy (AusIMM). Mr Fry is a consultant exploration geologist with BGM Investments Pty Ltd and consults to Classic Minerals Ltd. Mr. Fry has sufficient experience that is relevant to the style of mineralisation and the type of deposit under consideration, and to the activity being undertaken to qualify as a Competent Person as defined in the 2012 Edition of the "Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves". Mr. Fry consents to the inclusion in this report of the matters based on his information in the form and context in which it appears.

ASX: CLZ ACN 119 484 016

21 March 2017

Appendix 1: JORC (2012) Table1

Section 1 Sampling Techniques and Data

(Criteria in this section apply to all succeeding sections.)

Criteria	JORC Code explanation	Commentary
Sampling techniques	 Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases gold 	 The samples for historic drilling were taken by HQ diamond drill coring, RC face hammer drill and RAB drill. All RC drill samples for assaying were generated via an RC hammer (diameter unknown), but for early holes it is not known whether this was a face-sampling or conventional hammer. The majority of RC holes were sampled as one-metre composites. There is limited information provided in the reporting of historic results on the quality of the sampling processes Measures taken to ensure sample representativity are unknown, e.g. no comments were documented in previous reports on things such as metre delineation, dust suppression, bag weighing, etc. The determination of mineralisation was done via standard methods, including RC/diamond drilling, followed by splitting, crushing and fire assaying

21 March 2017		
	that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information.	
Drilling techniques	• Drill type (eg core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc).	• All historic drilling referred to in this Report was carried out using reverse circulation, diamond and rotary air blast drilling methods. Diamond core was by HQ core; however, no information on the type of tubing was available. Core orientations are not reported to have been completed. Information on RC drilling was not available (e.g. no information on hammer size, hammer type).
Drill sample recovery	 Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material. 	 Recoveries from the drilling are not known, but visual inspection of plastic PVC sample bags in the field indicate that recoveries were probably good. Sample recovery is recorded in the geological logging table within the database. With only 393 of the approximately 19,000 geological intervals assigned a value, it is not considered representative. Recoveries from the most recent RC drilling programs were reported as "excellent due to an auxiliary booster being used to keep samples dry". However, no suitable comments were presented in any available reports on measures taken to maximise and ensure sample recovery. It is not clear whether a relationship between recovery and grade occurs as information for RC drilling is not available
Logging	 Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. The total length and percentage of the relevant intersections logged. 	 Core and chips were logged, but it is not clear whether this has occurred to a level of detail to support the Mineral Resource estimation. Logging was qualitative in nature. Australian Resource Consultants Pty Ltd reviewed previous historical databases and available historical reports to develop the "haze_validated" database. As part of this process they completed a unified geological code system. This data, together with the logging provided in the "haze" database was used to define the various weathering surfaces and extent of alluvial cover.
Sub-sampling techniques and	• If core, whether cut or sawn and whether quarter, half or all core taken.	 It is assumed that diamond drill core was cut down its longitudinal axis with half the core selected for assay in line with geological boundaries,

21 March 2017		
sample preparation	 If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled. 	 and the remaining retained in the core tray. Review of the database indicates that the maximum selected sample length was constrained to one metre. Details of the splitter and drill rig configuration for RC drilling were not provided. Review of the database suggests that RC drilling was sampled on one metre intervals almost exclusively. The quality and the appropriateness of the sample preparation technique cannot be determined for the historic drilling. It is assumed that sampling practices employed during the respective drill programs followed standard industry practice in effect at the time. That the majority of the drilling forming this resource estimate is in excess of 15 years old, and that no detailed QA information and QC data can be presented raises some concerns about the reliability of the data. This has been taken into account in the assignment of the resource confidence. No studies have been undertaken to determine whether the sample size was appropriate for the grain size of the material sampled.
Quality of assay data and laboratory tests	 The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established. 	 Assays presented in the drill database consist of a range of aqua regia, fire assay and leach well analysis. The analytical laboratory is listed by drill hole in the collar table for 667 drill holes, with the remainder unknown. Determination of the analytical procedures employed was not completed. The quality and appropriateness of the assaying and laboratory procedures used could not be determined. Information on quality control procedures was not available.
Verification of sampling and assaying	 The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data 	 No comments are available in any reports on the verification of significant intersections Five (5) HQ-diameter RC/diamond drillholes were completed to twin previous RC intersections by independent or alternative company

21 March 2017		
	verification, data storage (physical and electronic) protocols.Discuss any adjustment to assay data.	personnelProcedures on data entry were not available.Assay data were not adjusted
Location of data points	 Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control. 	 All recent and historical drillhole collar positions that could be located were surveyed during a campaign undertaken at Wattle Rocks in December 1998. Other holes were left with their previously surveyed or nominally designed coordinates. The default RL of these holes were altered from 1000 mRL to 415 mRL in the database, to reflect an average of the topographic heights encountered across the broadly flat prospect area. During September 2000, the whole Blue Haze prospect area was tied by survey to mine grid and all existing RC and diamond drillhole collars were tied to this grid. Historical RAB holes at Lady Ada (with nominal RL's) were not used in the resource estimations. Most holes drilled prior to 1996 were not downhole surveyed. After this time, most drill holes with significant intersections were downhole surveyed by Surtron Technologies. Two lines of RC/Diamond holes at 19300N (Lady Ada) and 20000N (Lady Magdelene) were downhole surveyed using Total Borehole Services (TBS) in late 1998. A slimline deviation tool recording shots electronically every 0.1m downhole was utilised for the work. All recent drilling at Blue Haze was downhole surveyed. The drill hole coordinate system used relates to the Lady Ada local grid. A two-point conversion was used to convert back to GDA94 Z50 grid. With the exception of the Lady Ada area, no topographic surfaces were provided for use in the resource estimation process. In order to generate a surface with which to constrain the resource, the drill collar locations were exported from Surpac and used to generate a topographic surface. While this surface is unlikely to be accurate over small scales, due to the wide spaced nature of the drilling, it forms an acceptable approximation of the ground surface for use in the block model. Clearly this approach however

21 March 2017		
		assumes that the drill collar information is correct, which has been demonstrated in some instances to be uncertain.
Data spacing and distribution	 Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied. 	 Most drilling at Lady Ada is on 12.5x12.5m, with spacing between fences reducing to 50m further towards the north. The data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource estimation procedure and classifications applied. Sample compositing has been applied, however any anomalous intercepts were resampled as 1m intervals.
Orientation of data in relation to geological structure	 Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material. 	 The orientation of sampling has mostly achieved unbiased sampling of structures The relationship between the drilling orientation and the orientation of key mineralised structures is not considered to have introduced a sampling bias.
Sample security	• The measures taken to ensure sample security.	No information on sample security is available
Audits or reviews	 The results of any audits or reviews of sampling techniques and data 	No audits of any of the data are known

Section 2 Reporting of Exploration Results

(Criteria listed in the preceding section also apply to this section.)

Criteria	JORC Code explanation	Commentary
Mineral tenement and land tenure status	 Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along 	• The FGP Tenements are registered in the name of Reed Exploration Pty Ltd, which is a wholly owned subsidiary of ASX-listed Hannans Ltd (ASX code: HNR). Classic has acquired 80% of the gold rights only, with the remaining 20% of the gold rights held free-carried by Hannans Ltd until a decision to mine. Hannans Ltd also holds all of the non-gold rights on the FGP tenements including but not limited to nickel, lithium and other

21 March 2017		
	with any known impediments to obtaining a licence to operate in the area.	 metals The acquisition includes 80% of the gold rights (other mineral rights retained by tenement holder) in the following granted tenements: E77/2207; E77/2219; E77/2239; P77/4290; P77/4291; E77/2303; E77/2220. The Lady Lila Tenements include P77/4325 and P77/4326 which are still pending (ungranted).
Exploration done by other parties	Acknowledgment and appraisal of exploration by other parties.	• All exploration was carried out by previous owners of the tenements (Aztec Mining, Forerestania Gold NL, Viceroy Australia, Sons of Gwalia)
Geology	Deposit type, geological setting and style of mineralisation.	 The deposit is a Archean shear-zone hosted gold deposit. Geological interpretation indicates that the general stratigraphy consists of metasediments, BIF's and cherts to the east of the tenement, overlying an older sequence of metamorphosed komatiitic and high-magnesian basalts to the west. Black shales/pelites occur as small interbedded units throughout the stratigraphy, which dips gently to the east (10-35°) and strikes N-S, bending in a NNW direction in the far north of the tenement. An Archaean-aged quartz dolerite unit (informally the 'Wattle Rocks Dolerite') is emplaced along a contact between high-MgO basalt to the west and low-MgO ultramafic to the east, in the western part of the tenement and is the host rock for the Lady Ada (and Lady Magdalene) mineralisation. Strongly magnetic Proterozoic dolerite dykes cross-cut the stratigraphy in an east-west direction, splaying to the ENE, following fault directions interpreted from the aeromagnetics. A number of narrow shear zones lie subparallel to the shallow-dipping metasediment-mafic contact within the host stratigraphy and are important sites and conduits for the observed mineralisation. The Sapphire shear zone strikes approximately ENE, dipping to the SE at about 25°, and appears to crosscut all lithologies. This shear zone and associated shears host the bulk of the gold mineralisation at Wattle Rocks. Similar flat-dipping shears are known to crosscut the Lady Magdalene area. Approximately 8-12 metres of transported sands and a gold depleted weathering profile of saprolitic

21 March 2017		
		 clays overly the Lady Ada, Lady Magdalene and Lady Lila mineralisation. Structurally, the Wattle Rocks area is quite complex and is positioned near the intersection of several major breakages and flexures in the regional stratigraphy in this part of the Forrestania Greenstone belt. Numerous shear zones are evident throughout the area, particularly at changes of rock stratigraphy where there are rheological differences. Narrow, stacked, flat-dipping shear zones are evident within the quartz dolerite unit and may have resulted from thrusting of the younger sedimentary sequence over the mafic package from east to west. A similar model is predicted for Van Uden (10 km northwards) where mineralised quartz veins appear to 'stack' through a host ferruginous metasediment.
Drill hole Information	 A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth hole length. If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case. 	This information is provided in appendix 2
Data aggregation methods	 In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. 	 High grades were not cut in the reporting of weighted averages in this Report. Summary drill hole results as reported in figures and in the appendix 2 to this Report are reported on a 2m internal dilution and o.5 g/t Au cuto-off.

21 March 2017		
	 The assumptions used for any reporting of metal equivalent values should be clearly stated. 	
Relationship between mineralisation widths and intercept lengths	 These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true width not known'). 	 In almost all cases, the drill holes are perpendicular to the mineralisation. The true width is not expected to deviate much from intersection width.
Diagrams	 Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views. 	• Appropriate images have been provided in the Report.
Balanced reporting	 Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results. 	 Figures represent specific selected drill intervals to demonstrate the general trend of high grade trends. Cross sections show all relevant result in a balanced way.
Other substantive exploration data	 Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances. 	 Prior to commencing mining of the Lady Ada deposit, Ammtec Ltd to completed a metallurgical test work programme of the mineralisation. This test work involved testing of four composite samples representing oxide, fresh, and two separate transitional composites. The drill database did not detail any density measurements completed throughout the drilling programs. Density values assigned to the mineral resource were taken from historical values assigned to previously reported resources.
Further work	 The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive. 	 Proposed RC drilling is planned and has been presented in cross and long-sections. Figures clearly demonstrate the areas of possible extensions

21 March 2017

Section 3: Estimation and Reporting of Mineral Resources

(Criteria listed in section 1, and where relevant in section 2, also apply to this section.)

Criteria	JORC Code explanation	Commentary
Database integrity	 Measures taken to ensure that data has not been corrupted by, for example, transcription or keying errors, between its initial collection and its use for Mineral Resource estimation purposes. Data validation procedures used. 	 Drill hole database was reviewed against published hard copy reports and available drilling sections in order to confirm consistency between reported assays. All drill holes within the database were plotted into the Surpac mine design software and reviewed in three dimensional space. The access database created containing the sample data was imported into Surpac and plotted. This process performs an internal check of the data and lists any areas where there are overlapping samples, inconsistent sample intervals, or negative intervals. This process did not identify any issues which may have a material effect on the result. Assays were plotted and reviewed on each hole together with the lithology logged for each interval. A selection of assay results reported in the database used for estimation were reviewed against the original hard copy reported results for the laboratory. In some instances minor discrepancies were observed which were thought to be related to the averaging of repeat and secondary analysis. The magnitude of these discrepancies was not considered to be significant enough to have a material impact on the final resource figures.
Site visits	 Comment on any site visits undertaken by the Competent Person and the outcome of those visits. If no site visits have been undertaken indicate why this is the case. 	 The competent person has not completed any site visits to the project area. Given the historic nature of the project and lack of outcrop it was considered that a site visit would not materially change the treatment of the project.
Geological interpretation	 Confidence in (or conversely, the uncertainty of) the geological interpretation of the mineral deposit. Nature of the data used and of any assumptions made. The effect, if any, of alternative interpretations on Mineral Resource estimation. 	 While the drilling completed as a basis of the reported mineral resources is generally wide spaced, with the exception of Lady Ada, the geological interpretation is considered to provide sufficient confidence in line with the Mineral Resource classification assigned. No assumptions have been made.

21 March 2017		
	 The use of geology in guiding and controlling Mineral Resource estimation. The factors affecting continuity both of grade and geology. 	 The interpretation applied to the Lady Ada deposit is support by historic mining information including grade block outs and grade control. As such it is considered to accurately reflect the mineralisation. The interpretation in the other prospects has been developed with consideration of the local and regional geological and structural setting as currently understood. Based on the limited amount of diamond drilling across these prospects it is possible that alternative orientations may exist. Alternate orientations are currently not able to be supported by available information. The local and regional geological and structural setting was incorporated into the Mineral Resource estimate. Interpreted mineralisation present in the alluvial cover was subsequently removed to reflect the primary nature of the mineralisation. It is likely that structural features such as faults and shears exist which provide a secondary control on mineralisation. The lack of diamond drilling and detailed structural assessment may result in these features not being identified, which may result in restrictions or extensions to the observed mineralisation.
Dimensions	 The extent and variability of the Mineral Resource expressed as length (along strike or otherwise), plan width, and depth below surface to the upper and lower limits of the Mineral Resource. 	 Lady Ada - A total of 4 individual lenses reflecting gold mineralisation above a nominal cut-off of 0.5g/t Au were generated. These lenses dip between 10-25 degrees to the east and strike approximately north-south. A sub-set of one of the lenses was generated to reflect an observed high grade zone. Lenses vary in width from a few metres to tens of metres, although average 3-4 metres. Strike lengths average approximately 200m. Mineralisation extends to depths between 50 and 110 metres below surface. Lady Magdelene - A total of 11 individual lenses reflecting gold mineralisation above a nominal cut-off of 0.5g/t Au were generated. These lenses dip between 25-35 degrees to the east and strike approximately north-south. Lenses vary in width from two to five metres, infrequently to 10 metres. Strike lengths vary by lens but average approximately 300m. Mineralisation extends to depths between 80 and

21 March 2017		
		150 metres below surface.
		Lady Lila - A total of 3 individual lenses reflecting gold mineralisation above a nominal cut-off of 0.5g/t Au were generated. These lenses dip between 75-85 degrees to the east and strike approximately north-south, forming a discontinuous line of mineralisation. Lenses vary in width from two to five metres, with strike lengths varying between 50-400 metres. Mineralisation extends to depths between 50 and 80 metres below surface.
Estimation and modelling techniques	 The nature and appropriateness of the estimation technique(s) applied and key assumptions, including treatment of extreme grade values, domaining, interpolation parameters and maximum distance of extrapolation from data points. If a computer assisted estimation method was chosen include a description of computer software and parameters used. The availability of check estimates, previous estimates and/or mine production records and whether the Mineral Resource estimate takes appropriate account of such data. The assumptions made regarding recovery of by-products. Estimation of deleterious elements or other non-grade variables of economic significance (eg sulphur for acid mine drainage characterisation). In the case of block model interpolation, the block size in relation to the average sample spacing and the search employed. Any assumptions about correlation between variables. Description of how the geological interpretation was used to control the resource estimates. Discussion of basis for using or not using grade cutting or capping. The process of validation, the checking process used, the comparison of model data to drill hole data, and use of 	 Drill hole sample data was flagged within the database with the corresponding mineralisation lens appropriate to each prospect. Sample data was composited to 1m intervals within each of the flagged domains and investigated for the application of topcuts. Variography was completed using the composite data for each domain where possible. Those domains for which an acceptable variogram model was not achievable were assigned the variogram model of a geologically similar domain. Where no domains within a prospect were able to be developed, a nominal search ellipse was created to reflect the lens orientation and ID2 estimation completed. Grade was estimated into each of the mineralisation objects, each flagged as a unique domain within the block model to allow appropriate constraint of the composite data and estimation. Review of the historically reported resources for the estimated prospects indicates that total resources are comparable to previous resources. Comparison of the reported resource within the Blue Haze pit against reported production generates an almost identical tonnage, however at a higher grade. This likely reflects the application of topcuts and more selective mining supported by grade control drilling across the pit. As part of internal validation the Mineral Resource was re-estimated using inverse distance squared (ID2) and results compared against the reported OK results. This showed excellent correlation between estimates for the given estimation parameters.

21 March 2017		
	reconciliation data if available.	 Estimates of potentially deleterious elements have not been completed, primarily as a result of inconsistent sample suites. Parent block sizes were generally assigned with consideration of the average drill spacing, and application of kriging neighbourhood analysis (KNA). Sub-blocking was employed to varying levels to allow accurate resolution of the mineralisation solids within the block model. Grades were estimated into parent blocks only, with sub-blocks being assigned the value of their corresponding parent. Discretisation was set to 3X x 3Y x 3Z for all domains and elements. Search distances for estimation were set at approximately 75% of the maximum continuity of the variogram model. Selection of the minimum and maximum samples was defined via completion of KNA. Selection of the block size was based on available drilling data and is therefore significantly larger than any anticipated SMU. The geological interpretation was used to guide the generation of mineralisation domains. Domains are used as hard boundaries to constrain sample data and blocks for estimation. The selection of the top-cut was done using both the Sichel mean and the disintegration point. Given that the data was observed to be approximately log-normal the un-cut Sichel mean of the log data) approximated the Sichel mean. This cut value was then reviewed against the relative disintegration point of the composites and a best-fit value applied. Validation of the block model involved graphical review of the assay data against the block grades. Overall this showed that generally the block grades reflected the assay grades, although with a smoother distribution.
		comparing average composite assays against the respective block grades by Northing Fasting and RL. This allows areas of significant deviations
		between composite and block grades to be investigated and modifications

21 March 2017		
		made to the estimate if required. Review of these plots showed that overall the blocks estimated reflected the composites within that area. Instances where composite grades were significantly more than block grades were investigated and generally found to be associated with localised high grade intercepts in areas with few composites. Also important was investigation of the respective tonnages being estimated, with good correlation between composites and blocks more important in those zones reflecting large tonnages i.e. the majority of the tonnes generate good correlations between composites and blocks. Review of the reported production from the Blue Haze pit against the reported resource within the pit showed a good correlation with the tonnes, while the reported grade was approximately 30% lower. This possibly reflects the presence of spotty gold within the mineralisation not able to be represented in the resource estimate.
Moisture	 Whether the tonnages are estimated on a dry basis or with natural moisture, and the method of determination of the moisture content. 	All tonnages are estimated on a dry basis.
Cut-off parameters	 The basis of the adopted cut-off grade(s) or quality parameters applied. 	• A nominal cut-off of 0.5g/t Au was applied to the interpretation. The reporting of Mineral Resources is done at 0.5g/t Au cut-off.
Mining factors or assumptions	 Assumptions made regarding possible mining methods, minimum mining dimensions and internal (or, if applicable, external) mining dilution. It is always necessary as part of the process of determining reasonable prospects for eventual economic extraction to consider potential mining methods, but the assumptions made regarding mining methods and parameters when estimating Mineral Resources may not always be rigorous. Where this is the case, this should be reported with an explanation of the basis of the mining assumptions made. 	 Given the shallow nature of mineralisation and relatively low grades any potential mining is likely to be completed using standard open pit mining techniques. No assumptions on mining methodology have been made.
Metallurgical	The basis for assumptions or predictions regarding	Metallurgical testwork was completed on composites of the Blue Haze

21 March 2017		
factors or assumptions	metallurgical amenability. It is always necessary as part of the process of determining reasonable prospects for eventual economic extraction to consider potential metallurgical methods, but the assumptions regarding metallurgical treatment processes and parameters made when reporting Mineral Resources may not always be rigorous. Where this is the case, this should be reported with an explanation of the basis of the metallurgical assumptions made.	mineralisation prior to mining. It is expected that the observed metallurgical performance is applicable to the other prospects in the FGP area.
Environmental factors or assumptions	 Assumptions made regarding possible waste and process residue disposal options. It is always necessary as part of the process of determining reasonable prospects for eventual economic extraction to consider the potential environmental impacts of the mining and processing operation. While at this stage the determination of potential environmental impacts, particularly for a greenfields project, may not always be well advanced, the status of early consideration of these potential environmental impacts should be reported. Where these aspects have not been considered this should be reported with an explanation of the environmental assumptions made. 	 An existing waste landform is present at Blue Haze. The mining tenure is considered sufficient to allow the placement and management of any anticipated environmental requirements applicable to the operations.
Bulk density	 Whether assumed or determined. If assumed, the basis for the assumptions. If determined, the method used, whether wet or dry, the frequency of the measurements, the nature, size and representativeness of the samples. The bulk density for bulk material must have been measured by methods that adequately account for void spaces (vugs, porosity, etc), moisture and differences between rock and alteration zones within the deposit. Discuss assumptions for bulk density estimates used in the evaluation process of the different materials. 	 Assignment of bulk density values to the block model were assumed based on historically reported densities. Bulk densities are assigned based on weathering state and mineralisation. Bulk density determinations have not been completed and instead use assigned values. Drilling has not identified the presence of any voids nor significant differences between lithologies and alteration zones. Application of bulk density values was based on a series of surfaces representing transported, saprolite, saprock and top of fresh surfaces.
Classification	 The basis for the classification of the Mineral Resources into varying confidence categories. 	Classification of the Mineral Resource considered the interpretation confidence, drilling density, demonstrated continuity, estimation statistics

21 March 2017				
	•	Whether appropriate account has been taken of all relevant factors (ie relative confidence in tonnage/grade estimations, reliability of input data, confidence in continuity of geology and metal values, quality, quantity and distribution of the data). Whether the result appropriately reflects the Competent Person's view of the deposit.	•	(conditional bias, kriging efficiency), estimation pass and block model validation results. While the input data has been observed to be inconsistent in some instances, these inconsistencies are not considered to materially affect the final reported resources; with the Mineral Resource classification applied reflecting this uncertainty. The validation of the block model shows good correlation between input data and block grades. The assignment of the Mineral Resource classifications reflects the Competent Person's view of the deposit.
Audits or reviews	•	The results of any audits or reviews of Mineral Resource estimates.	•	No audits or review have been completed for the Mineral Resource estimate.
Discussion of relative accuracy/ confidence	•	Where appropriate a statement of the relative accuracy and confidence level in the Mineral Resource estimate using an approach or procedure deemed appropriate by the Competent Person. For example, the application of statistical or geostatistical procedures to quantify the relative accuracy of the resource within stated confidence limits, or, if such an approach is not deemed appropriate, a qualitative discussion of the factors that could affect the relative accuracy and confidence of the estimate. The statement should specify whether it relates to global or local estimates, and, if local, state the relevant tonnages, which should be relevant to technical and economic evaluation. Documentation should include assumptions made and the procedures used. These statements of relative accuracy and confidence of the estimate should be compared with production data, where available.	•	The relative accuracy of the Mineral Resource estimate is reflected in the reporting of the Mineral Resource as per the guidelines of the 2012 JORC Code. The statement relates to the global estimates of tonnes and grades. Review of the reported production from the Lady Ada pit against the reported resource within the pit showed a good correlation with the tonnes, while the reported grade was approximately 30% lower. This possibly reflects the presence of spotty gold within the mineralisation not able to be represented in the resource estimate.

21 March 2017

Appendix 2: Drill hole information

hole_id	У	x	z	Depth	Azi	Dip
FVHR001	14100	14500	415	120	275	-60
FVHR002	14100	14540	415	119	275	-60
FVHR003	14100	14580	415	118	275	-60
FVHR004	14100	14620	415	89	275	-60
FVHR005	14100	14660	415	104	275	-60
FVHR006	14100	14720	415	84	275	-60
FVHR007	14500	14460	415	75	275	-60
FVHR008	14500	14500	415	75	275	-60
FVHR009	14500	14540	415	75	275	-60
FVHR010	14500	14580	415	69	275	-60
FVHR011	14500	14620	415	75	275	-60
FVHR012	14500	14660	415	75	275	-60
FVHR013	14500	14700	415	74	275	-60
FVHR014	14900	14500	415	75	275	-60
FVHR015	14900	14540	415	75	275	-60
FVHR016	14900	14580	415	75	275	-60
FVHR017	14900	14620	415	75	275	-60
FVHR018	14900	14660	415	74	275	-60
FVHR019	14900	14700	415	60	275	-60
FVHR020	15700	14500	415	75	275	-60
FVHR021	15700	14540	415	75	275	-60
FVHR022	15700	14580	415	75	275	-60
FVHR023	15700	14620	415	74	275	-60
FVHR024	15700	14660	415	74	275	-60
FVHR025	15700	14700	415	75	275	-60
FVHR026	16100	14440	415	75	275	-60
FVHR027	16100	14480	415	75	275	-60
FVHR028	16100	14520	415	68	275	-60
FVHR029	16100	14560	415	75	275	-60
FVHR030	16100	14600	415	75	275	-60
FVHR031	16100	14640	415	75	275	-60
FVHR032	16100	14680	415	75	275	-60
FVHR033	16900	14420	415	75	275	-60
FVHR034	16900	14460	415	75	275	-60
FVHR035	16900	14500	415	75	275	-60
FVHR036	16900	14540	415	68	275	-60
FVHR037	16900	14580	415	75	275	-60
FWRD001	19275	9864	415	107	270	-75
FWRD002	19225	9958	415	136	270	-75

FWRD003	19200	10002	415	163	270	-75
FWRD004	19160	10003	415	67	270	-75
FWRD005	19160	9961	415	60	270	-75
FWRD006	19160	9918	416	60	270	-75
FWRD007	20000	9704	414	56	0	-90
FWRD008	20000	9846	416	64	0	-90
FWRD009	20100	9754	413	60	0	-90
FWRD010	20164	9761	413	59	0	-90
FWRD011	20211	9822	413	90	270	-60
FWRD012	20400	9774	412	70	270	-60
FWRP001	20502	9842	413	87	270	-60
FWRP002	20404	9788	412	85	270	-60
FWRP003	20404	9853	412	111	270	-60
FWRP004	20300	9803	413	81	270	-60
FWRP005	20099	9744	413	84	270	-60
FWRP006	19500	9750	415	87	270	-60
FWRP007	19500	9850	415	81	270	-60
FWRP008	19499	9975	416	80	270	-60
FWRP009	19501	10025	417	120	270	-60
FWRP010	20403	9900	414	150	270	-60
FWRP011	20302	9900	413	120	270	-60
FWRP012	20246	9849	413	100	270	-60
FWRP013	20243	9900	413	130	270	-60
FWRP014	20203	9901	413	120	270	-60
FWRP015	20152	9902	414	130	270	-60
FWRP016	20099	9813	414	100	270	-60
FWRP017	20100	9873	414	132	270	-60
FWRP018	20100	9925	415	140	270	-60
FWRP019	20046	9847	414	130	270	-60
FWRP020	20003	9839	416	111	270	-60
FWRP021	20003	9882	416	140	270	-60
FWRP022	20000	9953	417	120	270	-60
FWRP023	20002	10049	416	130	270	-60
FWRP024	19947	9848	416	130	270	-60
FWRP025	19900	9725	415	100	270	-60
FWRP026	19898	9757	416	100	270	-60
FWRP027	19900	9838	414	100	270	-60
FWRP028	19903	9956	415	110	270	-60
FWRP029	19902	10002	416	130	270	-60
FWRP030	19700	9950	415	90	270	-60

FWRP031	19703	10052	417	150	270	-60
FWRP032	19603	10055	417	130	270	-60
FWRP033	19399	9732	414	87	270	-60
FWRP034	19402	9927	416	100	270	-60
FWRP035	19401	9977	416	115	270	-60
FWRP036	19401	10027	416	80	270	-60
FWRP037	19401	10077	416	80	270	-60
FWRP038	19353	9975	416	130	270	-60
FWRP039	19302	9974	415	130	270	-60
FWRP040	19198	9756	414	91	270	-60
FWRP041	19198	9782	414	107	270	-60
FWRP042	19200	9853	415	100	270	-60
FWRP043	19200	9893	415	120	270	-60
FWRP044	19251	9950	415	147	270	-60
FWRP045	19800	10050	415	120	270	-60
FWRP046	19948	9719	415	63	270	-60
FWRP047	20242	9777	413	63	270	-60
FWRP048	20401	9757	412	75	270	-60
FWRP049	20401	9722	412	60	270	-60
FWRP050	20199	9727	413	60	270	-60
FWRP051	20049	10050	416	130	270	-60
FWRP052	20054	9722	413	60	270	-60
FWRP053	19959	10048	416	135	270	-60
FWRP054	19198	9888	415	120	42.46	-89.5
FWRP055	19199	9929	415	135	0	-90
FWRP056	19299	9969	415	120	0	-90
FWRP057	19302	10009	415	130	0	-90
FWRP058	19248	9940	415	135	0	-90
FWRP059	19251	9980	415	147	0	-90
FWRP060	19327	9948	415	117	194.6	-89.3
FWRP061	19326	9907	415	99	0	-90
FWRP062	20200	9798	413	80	0	-90
FWRP063	20200	9738	413	50	0	-90
FWRP064	19174	9774	414	60	0	-90
FWRP065	19175	9799	414	60	0	-90
FWRP066	19225	9750	415	55	358.9	-88.7
FWRP067	19238	9709	414	40	0	-90
FWRP068	19262	9699	414	40	0	-90
FWRP069	19276	9711	414	40	0	-90
FWRP070	19225	9773	414	65	0	-90

21 March 2017

FWRP071	19250	9774	415	60	220.9	-89.6
FWRP072	19225	9799	414	70	0	-90
FWRP073	19238	9811	414	75	191.6	-89.9
FWRP074	19225	9829	415	85	357.3	-89.3
FWRP075	19264	9830	415	85	202.9	-88.7
FWRP076	19227	9869	415	100	0	-90
FWRP077	19262	9869	415	85	10.01	-89.6
FWRP078	19311	9851	415	60	0	-90
FWRP079	19326	9885	415	70	0	-90
FWRP080	19350	9886	415	70	266.8	-88.8
FWRP081	19375	9886	415	70	307.1	-89.6
FWRP082	19379	9871	415	60	98.46	-89
FWRP083	19411	9809	415	50	0	-90
FWRP084	19387	9826	415	50	264.4	-89.1
FWRP085	19374	9810	415	50	315.2	-87.7
FWRP086	19362	9826	415	60	38.02	-88.6
FWRP087	19389	9790	415	50	0	-90
FWRP088	19379	9774	415	50	0	-90
FWRP089	19350	9775	414	60	0	-90
FWRP090	19363	9796	415	50	205.7	-89.2
FWRP091	19351	9811	415	60	150.4	-87.7
FWRP092	19362	9849	415	55	211	-89.2
FWRP093	19326	9762	414	60	103.7	-89.8
FWRR001	19100	10100	415	40	270	-60
FWRR002	19100	10080	415	49	270	-60
FWRR003	19100	10055	415	43	270	-60
FWRR004	19100	10033	415	50	270	-60
FWRR005	19100	10008	415	39	270	-60
FWRR006	19100	9988	415	37	270	-60
FWRR007	19803	10102	417	33	270	-60
FWRR008	19802	10084	416	29	270	-60
FWRR009	19803	10068	416	24	270	-60
FWRR010	19803	10057	416	27	270	-60
FWRR011	19804	10043	416	33	270	-60
FWRR012	19803	10026	416	32	270	-60
FWRR013	19803	10011	416	36	270	-60
FWRR014	19802	9992	416	28	270	-60
FWRR015	19803	9978	416	25	270	-60
FWRR016	19804	9964	416	32	270	-60
FWRR017	19803	9947	415	29	270	-60
FWRR018	19696	9806	415	26	270	-60
FWRR019	19702	9793	415	23	270	-60
FWRR020	19700	9781	415	24	270	-60
FWRR021	19699	9768	415	21	270	-60

FWRR022	19699	9757	415	19	270	-60
FWRR023	19700	9747	415	21	270	-60
FWRR024	19701	9736	415	18	270	-60
FWRR025	19701	9726	414	16	270	-60
FWRR026	19701	9716	414	17	270	-60
FWRR027	19700	9706	414	15	270	-60
FWRR028	19700	9695	414	21	270	-60
FWRR029	19700	9685	415	15	270	-60
FWRR030	19700	9675	415	31	270	-60
FWRR031	19703	9658	414	24	270	-60
FWRR032	19701	9639	414	21	270	-60
FWRR033	19700	9628	414	15	270	-60
FWRR034	19699	9617	414	13	270	-60
FWRR035	19699	9607	414	20	270	-60
FWRR036	19700	9598	414	20	270	-60
FWRR037	19700	9587	414	20	270	-60
FWRR038	19699	9574	414	29	270	-60
FWRR039	19701	9560	414	24	270	-60
FWRR040	19701	9547	414	22	270	-60
FWRR041	19700	9536	414	18	270	-60
FWRR042	19700	9526	413	18	270	-60
FWRR043	19700	9516	413	15	270	-60
FWRR044	19700	9505	413	11	270	-60
FWRR045	19601	9805	415	17	270	-60
FWRR046	19601	9795	415	21	270	-60
FWRR047	19601	9785	415	16	270	-60
FWRR048	19600	9774	415	24	270	-60
FWRR049	19599	9762	415	25	270	-60
FWRR050	19599	9749	415	31	270	-60
FWRR051	19600	9733	415	28	270	-60
FWRR052	19600	9719	415	28	270	-60
FWRR053	19599	9705	415	21	270	-60
FWRR054	19599	9694	415	29	270	-60
FWRR055	19599	9679	415	28	270	-60
FWRR056	19599	9666	415	27	270	-60
FWRR057	19598	9651	415	28	270	-60
FWRR058	19599	9638	415	34	270	-60
FWRR059	19599	9620	415	27	270	-60
FWRR060	19599	9606	415	24	270	-60
FWRR061	19598	9594	415	20	270	-60
FWRR062	19595	9584	415	21	270	-60
FWRR063	19600	9571	414	21	270	-60
FWRR064	19600	9563	414	14	270	-60
EW/RR065	19599	9552	414	21	270	-60

FWRR066	19599	9541	414	20	270	-60
FWRR067	19598	9531	414	20	270	-60
FWRR068	19598	9521	414	15	270	-60
FWRR069	19597	9511	414	20	270	-60
FWRR070	19803	9849	415	27	270	-60
FWRR071	19803	9835	415	18	270	-60
FWRR072	19803	9825	415	13	270	-60
FWRR073	19803	9815	415	25	270	-60
FWRR074	19802	9802	415	23	270	-60
FWRR075	19802	9790	414	19	270	-60
FWRR076	19802	9780	414	20	270	-60
FWRR077	19804	9771	414	18	270	-60
FWRR078	19801	9760	414	16	270	-60
FWRR079	19799	9751	414	16	270	-60
FWRR080	19800	9740	414	16	270	-60
FWRR081	19800	9729	414	18	270	-60
FWRR082	19800	9719	414	28	270	-60
FWRR083	19800	9706	414	22	270	-60
FWRR084	19800	9695	414	23	270	-60
FWRR085	19800	9683	414	16	270	-60
FWRR086	19799	9672	414	20	270	-60
FWRR087	19799	9663	414	17	270	-60
FWRR088	19799	9653	414	20	270	-60
FWRR089	19800	9643	414	17	270	-60
FWRR090	19801	9633	414	21	270	-60
FWRR091	19801	9622	414	15	270	-60
FWRR092	19800	9613	414	15	270	-60
FWRR093	19800	9603	414	14	270	-60
FWRR108	20301	10472	419	21	270	-60
FWRR109	20301	10463	419	34	270	-60
FWRR110	20301	10446	419	32	270	-60
FWRR111	20301	10430	419	25	270	-60
FWRR112	20301	10419	418	38	270	-60
FWRR113	20301	10400	418	38	270	-60
FWRR114	20301	10381	418	37	270	-60
FWRR115	20300	10362	418	47	270	-60
FWRR116	20301	10338	418	39	270	-60
FWRR117	20301	10320	418	38	270	-60
FWRR118	20301	10301	418	41	270	-60
FWRR119	20301	10279	417	43	270	-60
FWRR120	20300	10257	417	39	270	-60
FWRR121	20300	10237	417	30	270	-60
FWRR122	20300	10221	417	30	270	-60
FWRR123	20300	10205	417	21	270	-60

-60

21 March 2017 FWRR132 19903 10490 420 17 270

FWRR133	19903	10480	420	33	270	-60
FWRR134	19904	10464	420	36	270	-60
FWRR135	19903	10445	420	41	270	-60
FWRR136	19903	10425	420	30	270	-60
FWRR137	19903	10410	420	26	270	-60
FWRR138	19903	10397	420	20	270	-60
FWRR139	19903	10386	420	18	270	-60
FWRR140	19903	10375	420	24	270	-60
FWRR141	19903	10363	420	29	270	-60
FWRR142	19903	10348	419	31	270	-60
FWRR143	19903	10331	419	32	270	-60
FWRR144	19903	10316	419	34	270	-60
FWRR145	19903	10299	419	24	270	-60
FWRR146	19903	10288	418	30	270	-60
FWRR147	19903	10273	418	25	270	-60
FWRR148	19902	10260	418	25	270	-60
FWRR149	19902	10247	418	42	270	-60
FWRR150	19902	10227	418	32	270	-60
FWRR151	19902	10211	417	34	270	-60
FWRR152	19603	10502	419	38	270	-60
FWRR153	19602	10473	419	27	270	-60
FWRR154	19602	10459	419	27	270	-60
FWRR155	19602	10446	419	41	270	-60
FWRR156	19602	10424	419	32	270	-60
FWRR157	19602	10409	419	29	270	-60
FWRR158	19602	10394	419	39	270	-60
FWRR159	19602	10374	419	30	270	-60
FWRR160	19602	10359	419	24	270	-60
FWRR161	19603	10347	419	25	270	-60
FWRR162	19602	10335	419	35	270	-60
FWRR163	19602	10317	418	25	270	-60
FWRR164	19602	10301	418	38	270	-60
FWRR165	19602	10282	418	34	270	-60
FWRR166	19602	10265	418	26	270	-60
FWRR167	19602	10251	418	21	270	-60
FWRR168	19602	10241	418	18	270	-60
FWRR169	19602	10230	418	31	270	-60
FWRR170	19603	10214	418	24	270	-60
FWRR171	19603	10201	418	35	270	-60
FWRR172	19505	10504	418	28	270	-60
FWRR173	19503	10489	418	24	270	-60
FWRR174	19504	10477	418	23	270	-60
FWRR175	19504	10464	418	21	270	-60

FWRR176	19504	10456	418	28	270	-60
FWRR177	19503	10436	418	26	270	-60
FWRR178	19502	10424	418	22	270	-60
FWRR179	19502	10412	418	28	270	-60
FWRR180	19502	10398	418	40	270	-60
FWRR181	19503	10378	418	27	270	-60
FWRR182	19502	10364	419	44	270	-60
FWRR183	19502	10342	418	38	270	-60
FWRR184	19502	10324	418	25	270	-60
FWRR185	19502	10311	418	26	270	-60
FWRR186	19503	10297	418	21	270	-60
FWRR187	19502	10285	418	26	270	-60
FWRR188	19502	10272	418	20	270	-60
FWRR189	19502	10262	418	25	270	-60
FWRR190	19502	10249	418	27	270	-60
FWRR191	19502	10235	418	26	270	-60
FWRR192	19502	10222	418	30	270	-60
FWRR193	19502	10207	418	33	270	-60
FWRR194	19502	10190	417	34	270	-60
FWRR195	19502	10174	417	50	270	-60
FWRR196	19501	10148	417	46	270	-60
FWRR197	19501	10125	417	52	270	-60
FWRR198	19502	10100	417	47	270	-60
FWRR199	19502	10076	417	40	270	-60
FWRR200	19501	10056	417	33	270	-60
FWRR201	19500	10040	416	37	270	-60
FWRR202	19702	10253	418	31	270	-60
FWRR203	19702	10237	418	25	270	-60
FWRR204	19702	10224	418	21	270	-60
FWRR205	19702	10213	418	23	270	-60
FWRR206	19702	10201	418	28	270	-60
FWRR207	19702	10187	418	39	270	-60
FWRR208	19701	10167	418	31	270	-60
FWRR209	19701	10151	418	30	270	-60
FWRR210	19701	10136	417	35	270	-60
FWRR211	19701	10119	417	34	270	-60
FWRR212	19700	10100	417	22	270	-60
FWRR213	19700	10089	417	23	270	-60
FWRR214	19700	10076	417	20	270	-60
FWRR215	19700	10066	417	23	270	-60
FWRR216	19405	10501	417	32	270	-60
FWRR217	19404	10485	417	24	270	-60
FWRR218	19403	10473	417	22	270	-60
FW/RR219	19403	10462	418	24	270	-60

FWRR220	19403	10450	418	20	270	-60
FWRR221	19402	10439	418	22	270	-60
FWRR222	19401	10428	418	21	270	-60
FWRR223	19402	10417	418	29	270	-60
FWRR224	19402	10402	418	23	270	-60
FWRR225	19400	10389	415	36	270	-60
FWRR226	19402	10372	418	28	270	-60
FWRR227	19402	10358	418	44	270	-60
FWRR228	19402	10337	418	25	270	-60
FWRR229	19400	10322	415	19	270	-60
FWRR230	19400	10312	415	35	270	-60
FWRR231	19403	10296	418	29	270	-60
FWRR232	19402	10281	417	24	270	-60
FWRR233	19402	10269	417	21	270	-60
FWRR234	19402	10258	417	24	270	-60
FWRR235	19402	10245	417	27	270	-60
FWRR236	19402	10231	417	60	270	-60
FWRR237	19402	10199	417	20	270	-60
FWRR238	19401	10189	417	38	270	-60
FWRR239	19401	10170	417	51	270	-60
FWRR240	19401	10144	417	65	270	-60
FWRR241	19305	10501	417	31	270	-60
FWRR242	19303	10485	417	38	270	-60
FWRR243	19302	10467	417	36	270	-60
FWRR244	19302	10448	417	32	270	-60
FWRR245	19301	10432	417	32	270	-60
FWRR246	19302	10416	417	43	270	-60
FWRR247	19302	10394	417	34	270	-60
FWRR248	19302	10377	417	33	270	-60
FWRR249	19302	10359	417	44	270	-60
FWRR250	19302	10337	417	32	270	-60
FWRR251	19302	10321	417	39	270	-60
FWRR252	19302	10301	417	32	270	-60
FWRR253	19302	10285	417	26	270	-60
FWRR254	19302	10272	417	20	270	-60
FWRR255	19302	10262	417	23	270	-60
FWRR256	19302	10250	417	17	270	-60
FWRR257	19302	10240	416	29	270	-60
FWRR258	19301	10225	416	47	270	-60
FWRR259	19301	10201	416	38	270	-60
FWRR260	19301	10181	416	35	270	-60
FWRR261	19301	10163	416	41	270	-60
FWRR262	19301	10142	416	52	270	-60
FWRR263	19301	10116	416	56	270	-60
						-0

21 March 2017

FWRR264	19300	10088	416	44	270	-60
FWRR265	19300	10067	416	36	270	-60
FWRR266	19300	10048	416	30	270	-60
FWRR267	19300	10033	416	35	270	-60
FWRR268	19299	10016	415	36	270	-60
FWRR269	18902	10300	417	26	270	-60
FWRR270	18902	10286	417	21	270	-60
FWRR271	18902	10275	417	21	270	-60
FWRR272	18903	10264	417	17	270	-60
FWRR273	18903	10254	417	14	270	-60
FWRR274	18903	10244	417	24	270	-60
FWRR275	18903	10232	417	22	270	-60
FWRR276	18903	10221	416	23	270	-60
FWRR277	18903	10208	416	23	270	-60
FWRR278	18902	10197	416	19	270	-60
FWRR279	18902	10186	416	33	270	-60
FWRR280	18902	10169	416	30	270	-60
FWRR281	18902	10155	416	29	270	-60
FWRR282	18902	10139	416	23	270	-60
FWRR283	18902	10126	416	21	270	-60
FWRR284	18902	10115	416	23	270	-60
FWRR285	18902	10103	416	18	270	-60
FWRR286	18902	10094	416	25	270	-60
FWRR287	18902	10081	415	32	270	-60
FWRR288	18902	10065	415	31	270	-60
FWRR289	18902	10049	415	30	270	-60
FWRR290	18903	10034	415	30	270	-60
FWRR291	18902	10018	415	30	270	-60
FWRR292	18902	10002	415	47	270	-60
FWRR365	20300	9575	415	60	270	-60
FWRR366	20315	9608	413	62	270	-60
FWRR367	20300	9659	413	28	270	-60
FWRR368	20298	9709	413	49	270	-60
FWRR369	20298	9759	413	35	270	-60
FWRR370	19996	9647	415	57	270	-60
FWRR371	19997	9618	415	45	270	-60
FWRR372	19998	9595	415	49	270	-60
FWRR373	20003	9571	415	46	270	-60
FWRR374	19100	9973	415	32	270	-60
FWRR375	19101	9957	415	22	270	-60
FWRR376	19100	9946	415	30	270	-60
FWRR377	19100	9931	415	22	270	-60
FWRR378	19100	9920	415	15	270	-60
FWRR379	19201	10148	416	41	270	-60

FWRR380	19201	10127	416	40	270	-60
FWRR381	19200	10107	416	44	270	-60
FWRR382	19200	10085	416	52	270	-60
FWRR383	19200	10059	415	59	270	-60
FWRR384	19200	10029	415	64	270	-60
FWRR385	19200	9997	415	48	270	-60
FWRR386	19201	9974	415	44	270	-60
FWRR387	19199	9953	415	30	270	-60
FWRR388	19199	9937	415	22	270	-60
FWRR389	18901	9979	415	27	270	-60
FWRR390	18901	9966	415	41	270	-60
FWRR391	18901	9945	415	36	270	-60
FWRR392	18900	9927	415	39	270	-60
FWRR393	18900	9907	415	37	270	-60
FWRR394	18900	9888	415	38	270	-60
FWRR395	18900	9869	415	41	270	-60
FWRR396	18899	9849	415	34	270	-60
FWRR397	18898	9832	415	31	270	-60
FWRR398	18898	9816	415	32	270	-60
FWRR399	18898	9800	415	36	270	-60
FWRR400	18899	9782	415	22	270	-60
FWRR401	18899	9769	415	36	270	-60
FWRR402	18899	9751	415	28	270	-60
FWRR403	18899	9738	415	23	270	-60
FWRR404	18899	9725	415	21	270	-60
FWRR405	18899	9715	415	21	270	-60
FWRR406	18899	9704	415	23	270	-60
FWRR407	18899	9692	415	23	270	-60
FWRR408	18899	9680	415	24	270	-60
FWRR409	18899	9669	415	22	270	-60
FWRR410	18900	9658	415	24	270	-60
FWRR411	18900	9645	415	28	270	-60
FWRR412	18899	9631	415	19	270	-60
FWRR413	18899	9622	415	20	270	-60
FWRR414	18898	9611	415	24	270	-60
FWRR415	18898	9599	415	24	270	-60
FWRR416	18898	9587	415	23	270	-60
FWRR417	18897	9575	415	22	270	-60
FWRR418	18898	9564	415	16	270	-60
FWRR419	18899	9554	415	21	270	-60
FWRR420	18898	9543	414	24	270	-60
FWRR421	18898	9531	414	22	270	-60
FWRR422	18898	9520	414	25	270	-60
VWRD001	19300	9740	414	60	176.9	-60.4

VWRD002	19278	9770	414	60	1.72	-60.4
VWRD003	19324	9790	414	66	178.7	-60.1
VWRD004	19296	9810	414	55	2.71	-60.1
VWRD005	19301	9830	415	57	1.07	-59.9
VWRD006	19216	9763	414	80	52.25	-50.9
VWRD007	19224	9887	415	80	338.9	-49.8
VWRD008	19300	9950	415	80	273.3	-50.1
VWRD009	19363	9917	415	84	232.2	-51.7
VWRP001	19315	9841	415	64	227.2	-89.5
VWRP002	19285	9880	415	80	129.2	-90
VWRP003	19330	9800	415	60	238.6	-89.3
VWRP004	19340	9820	415	60	285.6	-89.5
VWRP005	19327	9860	415	60	0	-90
VWRP006	19325	9930	415	50	291.8	-88.9
VWRP007	19330	9910	415	50	73.01	-88.6
VWRP008	19313	9880	415	70	0	-90
VWRP009	19310	9819	415	60	160.2	-89.6
VWRP010	19290	9800	414	60	355.5	-89.2
VWRP011	19265	9800	415	75	0	-90
VWRP012	19275	9830	415	75	0	-90
VWRP013	19250	9830	415	75	0	-90
VWRP014	19275	9890	415	95	66.02	-89.7
VWRP015	19250	9710	414	45	189.2	-89.7
VWRP016	19260	9718	414	50	95.17	-89.5
VWRP017	19290	9721	414	50	236.8	-89.5
VWRP018	19239	9740	414	60	196.8	-89.9
VWRP019	19259	9760	414	60	194.4	-89.4
VWRP020	19280	9760	415	60	104.4	-89.7
VWRP021	19274	9780	414	60	66.25	-89.5
VWRP022	19310	9780	414	60	128.5	-89.5
VWRP023	19276	9930	415	100	127	-89.5
VWRP024	19250	9920	415	110	130.6	-88.6
VWRP025	19238	9889	415	100	167.4	-89.3
VWRP026	19260	9860	415	90	308	-89.4
VWRP027	19285	9859	415	75	195.7	-89.5
VWRP028	19335	9841	415	60	145.9	-89.5
VWRP029	19309	9719	414	50	34.42	-87.3
VWRP030	19220	9741	414	55	273.7	-89.4
VWRP031	19270	9910	415	90	108.3	-89.4
VWRP032	19264	9900	415	95	157.7	-88.3
VWRP033	19237	9910	415	110	256.6	-89.3
VWRP034	19237	9931	415	110	218	-88.9
VWRP035	19225	9900	415	104	248.1	-89.2
VWRP036	19212	9910	415	110	191.7	-89.2

z inia	rcn 20	JT/					
WRP037	19213	9860	415	95	0	-90	wr0
WRP038	19225	9849	415	90	119.2	-89.6	wr0
VRP039	19800	9700	415	50	270	-60	wr0
NRP040	19800	9740	415	70	270	-60	wr0
WRP041	19800	9780	415	70	270	-60	wr0
WRP042	19750	9720	415	60	270	-60	wr0
WRP043	19750	9760	415	70	270	-60	wr0
WRP044	19750	9800	415	70	270	-60	wr0
/WRP045	19700	9700	415	60	270	-60	wr0
WRP046	19700	9740	415	60	270	-60	wr0
/WRP047	19700	9780	415	80	270	-60	wr0
WRP048	19650	9760	415	70	270	-60	wr0
WRP049	19650	9840	415	90	270	-60	wr0
WRP050	19600	9700	415	60	270	-60	wr0
WRP051	19600	9740	415	70	270	-60	wr0
WRP052	19550	9760	415	70	270	-60	wr0
WRP053	19550	9840	415	70	270	-60	wr0
WRP054	19500	9800	415	60	270	-60	wr0
/r001	18900	9949	415	34	270	-60	wr0
r002	19300	9949	415	31	270	-60	wr0
r003	19300	9933	415	29	270	-60	wr0
r004	19300	9919	415	29	270	-60	wr0
r005	19300	9906	415	19	270	-60	wr
r006	19300	9896	415	20	270	-60	wr0
r007	19300	9884	415	18	270	-60	wr0
r008	19300	9874	415	18	270	-60	wr0
009	19300	9865	415	15	270	-60	wr0
r010	19300	9856	415	25	270	-60	wr0
r011	19300	9845	415	23	270	-60	wr0
r012	19300	9834	415	20	270	-60	wr0
r013	19300	9824	415	18	270	-60	wr0
r014	19300	9815	415	21	270	-60	wr0
r015	19300	9805	415	32	270	-60	wr0
r016	19300	9788	414	33	270	-60	wr0
r017	19300	9773	415	43	270	-60	wr0
/r018	19300	9751	415	28	270	-60	wr0
r019	19300	9738	415	39	270	-60	wr
r020	19300	9719	415	33	270	-60	wr
r021	19300	9701	415	29	270	-60	wr
r022	19300	9687	415	20	270	-60	wr
/r023	19300	9676	415	17	270	-60	wr
r024	19700	9998	415	27	270	-60	wr
vr025	19700	9984	415	33	270	-60	wr
r026	19700	9968	415	32	270	-60	wre
0-0	10,00	5500	-12	52	2,0	00	WIC

wr027	19700	9952	415	30	270	-60	
wr028	19700	9937	415	33	270	-60	
wr029	19700	9921	415	33	270	-60	
wr030	19700	9904	415	29	270	-60	
wr031	19700	9890	415	30	270	-60	
wr032	19700	9873	415	24	270	-60	
wr033	19700	9862	415	24	270	-60	
wr034	19700	9850	415	19	270	-60	
wr035	19700	9840	415	25	270	-60	
wr036	19700	9827	415	17	270	-60	
wr037	19700	9817	415	16	270	-60	
wr038	19700	9808	415	26	270	-60	
wr039	19700	9795	415	23	270	-60	
wr040	19700	9783	415	25	270	-60	
wr041	19700	9771	415	21	270	-60	
wr042	19700	9759	415	19	270	-60	
wr043	19700	9749	415	23	270	-60	
wr044	19700	9737	415	20	270	-60	
wr045	19700	9727	415	16	270	-60	
wr046	19700	9716	415	15	270	-60	
wr047	20900	10999	415	38	275	-60	
wr048	20900	10980	415	35	275	-60	
wr049	20900	10962	415	34	275	-60	
wr050	20900	10944	415	28	275	-60	
wr051	20900	10930	415	45	275	-60	
wr052	20900	10907	415	37	275	-60	
wr053	20900	10888	415	44	275	-60	
wr054	20900	10867	415	36	275	-60	
wr055	20900	10847	415	28	275	-60	
wr056	20900	10833	415	30	275	-60	
wr057	20900	10818	415	29	275	-60	
wr058	20900	10803	415	24	275	-60	
wr059	20900	10791	415	14	275	-60	
wr060	20900	10781	415	19	275	-60	
wr061	20900	10770	415	18	275	-60	
wr062	20900	10760	415	21	275	-60	
wr063	20900	10749	415	20	275	-60	
wr064	20900	10739	415	14	275	-60	
wr065	20900	10728	415	13	275	-60	
wr066	20900	10718	415	10	275	-60	
wr067	20900	10707	415	13	275	-60	
wr068	20900	10696	415	12	275	-60	
wr069	20900	10680	415	14	275	-60	
wr070	20900	10667	415	12	275	-60	

wr091	20500	11350	415	31	275	-60
wr092	20500	11333	415	25	275	-60
wr093	20500	11321	415	23	275	-60
wr094	20500	11308	415	9	275	-60
wr095	20500	11306	415	8	275	-60
wr096	20500	11295	415	3	275	-60
wr097	20500	11285	415	49	275	-60
wr098	20900	11034	415	57	275	-60
wr099	20900	11061	415	48	275	-60
wr100	20900	11087	415	45	275	-60
wr101	20900	11118	415	55	275	-60
wr102	20900	11145	415	48	275	-60
wr103	20900	11172	415	52	275	-60
wr104	20900	11200	415	54	275	-60
wr105	20900	11224	415	46	275	-60
wr106	20900	11239	415	28	275	-60
wr107	20900	11250	415	18	275	-60
wr108	20900	11264	415	25	275	-60
wr109	20900	11275	415	16	275	-60
wr110	20900	11285	415	17	275	-60
wr111	20900	11300	415	28	275	-60
wr112	19300	9709	415	31	270	-60
wr113	19500	9849	415	16	270	-60
wr114	19500	9837	415	18	270	-60
wr115	19500	9826	415	20	270	-60
wr116	19500	9814	415	20	270	-60
wr117	19500	9802	415	22	270	-60
wr118	19500	9790	415	29	270	-60
wr119	19500	9772	415	32	270	-60
wr120	19300	9728	415	37	270	-60
wr121	19300	9762	415	41	270	-60
wr122	19300	9878	415	15	270	-60
wr123	20500	11252	415	46	275	-60
wr124	20500	11227	415	45	275	-60
wr125	20100	11181	415	38	275	-60
wr126	19600	10170	415	52	270	-60
wr127	19600	10144	415	43	270	-60
wr128	19600	10123	415	37	270	-60
wr129	19600	10105	415	40	270	-60
wr130	19600	10086	415	32	270	-60
wr131	19600	10072	415	26	270	-60
wr132	19600	10059	415	30	270	-60
wr133	19600	10045	415	33	270	-60
wr134	19600	10032	415	36	270	-60

21 M	arch 20)17																		
wr135	19600	10017	415	21	270	-60	wr194	21000	11100	415	48	275	-60	v	vr238	19700	10292	415	28	270
wr136	19600	10008	415	27	270	-60	wr195	21000	11079	415	50	275	-60	v	vr239	19700	10279	415	33	270
wr137	19600	9997	415	21	270	-60	wr196	21000	11059	415	45	275	-60	v	vr240	19700	10263	415	28	270
wr138	19600	9987	415	22	270	-60	wr197	21000	11040	415	52	275	-60	v	vr241	19200	10250	415	24	270
wr139	19600	9977	415	27	270	-60	wr198	21000	11016	415	51	275	-60	v	vr242	19200	10237	415	23	270
wr140	19600	9966	415	36	270	-60	wr199	21000	10993	415	42	275	-60	v	vr243	19200	10227	415	33	270
wr141	19600	9950	415	34	270	-60	wr200	21000	10974	415	40	275	-60	v	vr244	19200	10211	415	33	270
wr142	19600	9936	415	33	270	-60	wr201	21000	10955	415	47	275	-60	v	vr245	19200	10198	415	34	270
wr143	19600	9923	415	35	270	-60	wr202	21000	10935	415	13	275	-60	v	vr246	19200	10181	415	34	270
wr159	20100	10489	415	24	270	-60	wr203	21000	10925	415	40	275	-60	v	vr247	19200	10165	415	34	270
wr160	20100	10479	415	32	270	-60	wr204	21000	10908	415	38	275	-60	v	vr248	19400	9776	415	35	270
wr161	20100	10463	415	31	270	-60	wr205	21000	10889	415	37	275	-60	v	vr249	19400	9760	415	40	270
wr162	20100	10450	415	28	270	-60	wr206	21000	10873	415	37	275	-60	v	vr250	19400	9749	415	37	270
wr163	20100	10437	415	34	270	-60	wr207	21000	10856	415	34	275	-60	v	vr251	19400	9725	415	32	270
wr164	20100	10421	415	32	270	-60	wr208	21000	10840	415	28	275	-60	v	vr252	19400	9711	415	34	270
wr165	20100	10406	415	22	270	-60	wr209	21000	10828	415	27	275	-60	v	vr253	19500	9759	415	36	270
wr166	20100	10395	415	19	270	-60	wr210	21000	10814	415	28	275	-60	v	vr254	19500	9743	415	33	270
wr167	20100	10384	415	17	270	-60	wr211	21000	10800	415	26	275	-60	v	vr255	19500	9727	415	34	270
wr168	20800	11029	415	52	275	-60	wr212	21000	10791	415	26	275	-60	v	vr256	19500	9713	415	33	270
wr169	20800	11006	415	50	275	-60	wr213	21000	10778	415	31	275	-60	v	vr257	19200	9799	415	28	270
wr170	20800	10986	415	44	275	-60	wr214	21000	10763	415	30	275	-60	v	vr258	19200	9786	415	38	270
wr171	20800	10967	415	49	275	-60	wr215	21000	10749	415	35	275	-60	v	vr259	19200	9769	415	28	270
wr172	20800	10947	415	42	275	-60	wr216	21000	10732	415	35	275	-60	v	vr260	19200	9756	415	25	270
wr173	20800	10929	415	40	275	-60	wr217	20900	14026	415	58	270	-60	v	vr261	19200	9744	415	25	270
wr174	20800	10911	415	40	275	-60	wr218	20900	14052	415	58	270	-60	v	vr262	19200	9733	415	25	270
wr175	20800	10894	415	45	275	-60	wr219	20900	14078	415	58	270	-60	v	vr263	19200	9721	415	28	270
wr176	20800	10875	415	39	275	-60	wr220	20900	14107	415	58	270	-60	v	vr264	20100	14199	415	64	270
wr177	20800	10859	415	34	275	-60	wr221	20900	14133	415	52	270	-60	v	vr265	20100	14171	415	64	270
wr178	20800	10845	415	35	275	-60	wr222	20700	9682	415	30	270	-60	v	vr266	20100	14143	415	64	270
wr179	20800	10829	415	27	275	-60	wr223	20700	9700	415	34	270	-60	v	vr267	20100	14114	415	28	270
wr180	20800	10815	415	25	275	-60	wr224	19700	10450	415	24	270	-60	v	vr268	20100	14102	415	64	270
wr181	20800	10804	415	23	275	-60	wr225	19700	10437	415	22	270	-60	v	vr269	20100	14073	415	64	270
wr182	20800	10794	415	20	275	-60	wr226	19700	10427	415	29	270	-60	v	vr270	19200	9900	415	16	270
wr183	20800	10785	415	17	275	-60	wr227	19700	10414	415	20	270	-60	v	vr271	19200	9950	415	20	270
wr184	20800	10776	415	16	275	-60	wr228	19700	10404	415	25	270	-60	v	vr272	19200	10000	415	34	270
wr185	20800	10766	415	19	275	-60	wr229	19700	10392	415	21	270	-60	v	vr273	19400	9800	415	32	270
wr186	20800	10756	415	16	275	-60	wr230	19700	10381	415	22	270	-60	v	vr274	19400	9850	415	24	270
wr187	20800	10747	415	12	275	-60	wr231	19700	10371	415	23	270	-60	v	vr275	19400	9900	415	26	270
wr188	20800	10738	415	8	275	-60	wr232	19700	10361	415	23	270	-60	v	vr276	19400	9950	415	31	270
wr189	20800	10729	415	8	275	-60	wr233	19700	10351	415	25	270	-60	v	vr277	19400	10000	415	39	270
wr190	20800	10720	415	19	275	-60	wr234	19700	10341	415	19	270	-60	v	vr278	19400	10050	415	34	270
wr191	20800	10711	415	14	275	-60	wr235	19700	10331	415	28	270	-60	v	vr279	19400	10100	415	40	270
wr192	20800	10702	415	19	275	-60	wr236	19700	10317	415	26	270	-60	v	vr280	19400	9650	415	28	270
wr193	20800	10692	415	14	275	-60	wr237	19700	10305	415	30	270	-60	v	vr281	19400	9680	415	31	270

-60 -60

wr282	19700	9700	415	13	270	-60	wr334	21100	10900	415	28	275	-60	w	381 19	331	9810	415	36
wr283	19700	9650	415	22	270	-60	wr335	21100	10950	415	37	275	-60	w	382 19	349	9810	415	46
wr284	19700	9600	415	14	270	-60	wr336	21100	11050	415	40	275	-60	w	383 20	1994	10850	415	32
wr285	19700	9550	415	18	270	-60	wr337	21100	11150	415	48	275	-60	w	384 20	1978	10850	415	34
wr286	19900	9950	415	13	270	-60	wr338	20500	10900	415	38	275	-60	w	385 20	961	10850	415	36
wr287	19900	9900	415	18	270	-60	wr339	20500	10850	415	22	275	-60	w	386 20	1942	10850	415	34
wr288	19900	9850	415	20	270	-60	wr340	20500	10800	415	20	275	-60	w	387 20	1925	10850	415	36
wr289	19900	9800	415	21	270	-60	wr341	20500	10750	415	24	275	-60	w	388 20	906	10850	415	34
wr290	19900	9750	415	13	270	-60	wr342	20500	10700	415	22	275	-60	w	389 20	887	10850	415	38
wr291	19900	9700	415	9	270	-60	wr343	20700	10750	415	20	275	-60	w	390 20	869	10850	415	35
wr292	19900	9650	415	19	270	-60	wr344	20700	10700	415	18	275	-60	w	391 20	852	10850	415	37
wr293	19900	9600	415	27	270	-60	wr345	20900	11350	415	39	275	-60	w	392 20	1833	10850	415	35
wr294	20700	9666	415	32	270	-60	wr346	20900	11400	415	34	275	-60	w	393 20	816	10850	415	34
wr295	20700	9652	415	30	270	-60	wr347	20900	11450	415	34	275	-60	w	394 20	798	10850	415	35
wr296	20700	9637	415	27	270	-60	wr348	20900	11500	415	50	275	-60	w	395 19	300	9660	415	15
wr297	20700	9624	415	22	270	-60	wr349	20100	9950	415	14	270	-60	w	396 19	289	9660	415	17
wr298	20700	9612	415	15	270	-60	wr350	20100	9900	415	18	270	-60	w	397 19	278	9660	415	17
wr299	20700	9604	415	12	270	-60	wr351	20100	9850	415	21	270	-60	w	398 19	270	9660	415	19
wr300	20900	10650	415	45	275	-60	wr352	20100	9800	415	32	270	-60	w	399 19	258	9660	415	21
wr301	20900	10600	415	35	275	-60	wr353	20100	9750	415	29	270	-60	w	400 19	250	9660	415	22
wr302	20900	10550	415	31	275	-60	wr354	20100	9700	415	49	270	-60	w	401 19	298	9885	415	29
wr303	20900	10500	415	34	275	-60	wr355	20300	9800	415	16	270	-60	w	402 19	283	9885	415	19
wr304	20900	10700	415	15	275	-60	wr356	20300	9750	415	22	270	-60	w	403 19	272	9885	415	34
wr305	20700	11050	415	51	275	-60	wr357	20300	9700	415	37	270	-60	w	404 19	254	9885	415	14
wr306	20700	11100	415	46	275	-60	wr358	20500	9900	415	16	270	-60	w	405 19	244	9885	415	14
wr307	20700	11150	415	46	275	-60	wr359	20500	9850	415	19	270	-60	w	406 20	785	10800	415	22
wr308	20700	11200	415	47	275	-60	wr360	20500	9800	415	21	270	-60	w	r407 20	773	10800	415	24
wr309	20700	11250	415	53	275	-60	wr361	20500	9750	415	47	270	-60	w	r408 20	758	10800	415	21
wr310	20700	11300	415	34	275	-60	wr362	20500	9700	415	44	270	-60	w	r409 20	747	10800	415	22
wr311	20700	11350	415	28	275	-60	wr363	20500	9650	415	39	270	-60	w	r410 20	735	10800	415	22
wr312	20700	11400	415	16	275	-60	wr367	19900	9694	415	18	270	-60	w	r411 20	725	10800	415	22
wr313	20700	11450	415	34	275	-60	wr368	20900	10625	415	38	275	-60	w	r412 20	712	10800	415	22
wr314	20700	11500	415	27	275	-60	wr369	20700	11224	415	52	275	-60	w	r413 19	370	9885	415	29
wr315	21300	10850	415	14	275	-60	wr370	19350	9735	415	39	180	-60	w	r414 19	357	9885	415	30
wr316	21300	10900	415	49	275	-60	wr371	19329	9735	415	42	180	-60	w	r415 19	342	9885	415	25
wr317	21300	10950	415	52	275	-60	wr372	19307	9735	415	44	180	-60	w	r416 19	330	9885	415	22
wr318	21300	11000	415	55	275	-60	wr373	19284	9735	415	47	180	-60	w	r417 19	317	9885	415	20
wr319	21300	11050	415	32	275	-60	wr374	19260	9735	415	44	180	-60	w	r418 19	307	9885	415	20
wr320	21300	11100	415	52	275	-60	wr375	19237	9735	415	24	180	-60	w	r419 19	350	9660	415	22
wr321	21300	11150	415	49	275	-60	wr376	19249	9810	415	29	360	-60	w	r420 19	332	9660	415	15
wr330	20900	14058	415	55	90	-60	wr377	19263	9810	415	31	360	-60	w	r421 19	322	9660	415	18
wr331	20900	14068	415	6	0	-90	wr378	19280	9810	415	22	360	-60	w	r422 19	312	9660	415	12
wr332	20900	14084	415	6	0	-90	wr379	19293	9810	415	28	360	-60	w	423 21	.100	11450	415	34
wr333	20900	14100	415	6	0	-90	wr380	19308	9810	415	43	360	-60	w	424 21	100	11350	415	42

360

360

275

275

275

275

275

275 275

275

275

275

275

275

180 180

180

180

180

180

180

180

180

180

180

275

275

275

275

275

275

275

180

180

180

180

180 180

180 180

180

180

275 275 -60

-60

-60

-60

-60

-60

-60 -60

-60

-60

-60

-60

-60

-60 -60

-60

-60

-60

-60

-60

-60

-60

-60

-60

-60

-60

-60

-60

-60

-60

-60

-60

-60

-60 -60

-60

-60

-60 -60

-60

-60

-60 -60

-60

21 Ma	arch 20	017																	
wr425	21100	11100	415	51	275	-60	wr474	21700	11400	415	51	275	-60	wr533	21100	15000	415	41	275
wr426	20796	10944	415	40	275	-60	wr475	21700	11350	415	55	275	-60	wr534	21100	15050	415	36	275
wr427	20776	10939	415	44	275	-60	wr476	21700	11300	415	38	275	-60	wr535	21100	15068	415	41	275
wr428	20754	10925	415	39	275	-60	wr47	21700	10850	415	55	275	-60	wr536	21100	15088	415	23	275
wr429	20738	10925	415	37	275	-60	wr478	21700	10800	415	39	275	-60	wr537	21100	15100	415	38	275
wr430	20720	10925	415	45	275	-60	wr479	21700	10750	415	31	275	-60	wr538	21100	15118	415	30	275
wr431	20600	10943	415	45	275	-60	wr480	21700	10700	415	27	275	-60	wr539	20700	14450	415	58	275
wr432	20600	10919	415	40	275	-60	wr48:	21700	10400	415	41	270	-60	wr540	20700	14400	415	63	275
wr433	20600	10899	415	48	275	-60	wr48	20600	11325	415	33	275	-60	wr541	20700	14500	415	70	275
wr434	20700	14058	415	64	270	-60	wr488	20600	11885	415	45	275	-60	wr542	20700	14550	415	79	275
wr435	20700	14091	415	64	270	-60	wr490	20700	10450	415	40	270	-60	wr543	20700	15050	415	66	275
wr436	20700	14119	415	58	270	-60	wr49:	20700	10350	415	15	270	-60	wr544	20700	15017	415	46	275
wr437	20700	14149	415	59	270	-60	wr492	20700	10250	415	18	270	-60	wr545	20700	14997	415	54	275
wr438	20500	14083	415	58	270	-60	wr493	20500	10725	415	21	275	-60	wr546	20700	14972	415	47	275
wr439	20500	14111	415	58	270	-60	wr494	20500	10775	415	11	275	-60	wr547	20700	14950	415	38	275
wr440	20500	14135	415	55	270	-60	wr495	21100	10850	415	31	275	-60	wr548	20700	14933	415	40	275
wr441	20500	14168	415	64	270	-60	wr496	21100	11000	415	34	275	-60	wr549	20500	15000	415	63	275
wr442	20500	14200	415	64	270	-60	wr49	20700	10400	415	28	270	-60	wr550	20500	14970	415	46	275
wr443	20300	14092	415	60	270	-60	wr498	20700	10425	415	25	270	-60	wr551	20500	14950	415	35	275
wr444	20300	14112	415	40	270	-60	wr499	20900	15000	415	38	275	-60	wr552	20500	14932	415	29	275
wr445	20300	14144	415	64	270	-60	wr500	20900	15100	415	30	275	-60	wr553	20100	14950	415	31	275
wr446	20300	14175	415	64	270	-60	wr50:	20900	15050	415	45	275	-60	wr554	20100	14935	415	32	275
wr447	19900	14078	415	64	270	-60	wr502	20900	15025	415	40	275	-60	wr555	20100	14920	415	40	275
wr448	19900	14112	415	64	270	-60	wr512	20500	10500	415	22	275	-60	wr556	20100	14900	415	26	275
wr449	19900	14144	415	64	270	-60	wr513	20500	10600	415	28	275	-60	wr557	20100	14888	415	32	275
wr450	19900	14176	415	61	270	-60	wr514	20500	10550	415	25	275	-60	wr558	16900	15250	415	25	275
wr451	20697	10925	415	44	275	-60	wr515	20500	10575	415	20	275	-60	wr559	16900	15237	415	64	275
wr457	20675	10915	415	72	275	-60	wr516	21300	10700	415	22	275	-60	wr560	16900	15209	415	42	275
wr458	21300	10500	415	55	275	-60	wr517	21300	10750	415	14	275	-60	wr561	16900	15190	415	62	275
wr459	21300	10550	415	36	275	-60	wr518	21300	10800	415	14	275	-60	wr562	16900	15162	415	84	275
wr460	21300	10600	415	24	275	-60	wr519	21100	10650	415	46	275	-60	wr563	16900	15123	415	32	275
wr461	21300	10650	415	14	275	-60	wr520	21100	10700	415	25	275	-60	wr564	15300	15300	415	44	275
wr462	20659	10915	415	31	275	-60	wr52:	21100	10750	415	17	275	-60	wr565	15300	15279	415	31	275
wr463	20700	9750	415	55	270	-60	wr522	21100	10800	415	12	275	-60	wr566	15300	15265	415	73	275
wr464	20700	9700	415	22	270	-60	wr523	20600	10500	415	19	275	-60	wr567	15300	15231	415	86	275
wr465	20700	9650	415	18	270	-60	wr524	20600	10550	415	12	275	-60	wr568	20600	10850	415	25	275
wr466	20700	9600	415	20	270	-60	wr525	20600	10600	415	9	275	-60	wr569	20600	10800	415	15	275
wr467	20850	11250	415	40	275	-60	wr526	20500	10525	415	18	275	-60	wr570	20600	10750	415	8	275
wr468	20800	11250	415	43	275	-60	wr52	20700	10550	415	16	275	-60	wr571	20600	10700	415	5	275
wr469	20750	11250	415	17	275	-60	wr528	20700	10600	415	21	275	-60	wr577	14100	15300	415	35	275
wr470	20600	11200	415	52	275	-60	wr529	20700	10650	415	38	275	-60	wr578	14100	15250	415	21	275
wr471	20600	11250	415	51	275	-60	wr530	20800	11150	415	44	275	-60	wr579	14100	15275	415	29	275
wr472	20600	11300	415	28	275	-60	wr53:	20800	11200	415	51	275	-60	wr580	14100	15325	415	29	275
wr473	20600	11350	415	24	275	-60	wr532	20900	15038	415	46	275	-60	wr581	14100	15350	415	51	275

-60 -60

									1	1		5055			
wr582	15300	15400	415	66	275	-60	wr629	19800	14167	415	54	270	-60	wr675	16500
wr583	15300	15350	415	39	275	-60	wr632	21500	11300	415	40	275	-60	wr676	16500
wr584	16900	15075	415	47	275	-60	wr633	21300	11350	415	39	275	-60	wr677	14100
wr585	16900	15000	415	43	275	-60	wr634	21100	11250	415	50	275	-60	wr678	14100
wr586	16900	15030	415	57	275	-60	wr635	21000	11425	415	46	275	-60	wr679	14100
wr587	20900	14650	415	51	275	-60	wr636	20600	10950	415	40	275	-60	wr680	17500
wr588	20900	14700	415	23	275	-60	wr637	20600	11000	415	31	275	-60	wr681	17500
wr589	20900	14750	415	54	275	-60	wr638	20600	11050	415	52	275	-60	wr682	17500
wr590	20900	14800	415	51	275	-60	wr639	20600	11100	415	69	275	-60	wr683	17500
wr591	20900	14850	415	42	275	-60	wr640	20600	11150	415	43	275	-60	wr684	17500
wr592	20900	14900	415	52	275	-60	wr641	20500	10950	415	39	275	-60	wr685	17500
wr593	20900	14950	415	38	275	-60	wr642	20500	11000	415	40	275	-60	wr686	17500
wr594	20500	14985	415	49	275	-60	wr643	20500	11050	415	46	275	-60	wr687	17500
wr595	20900	14600	415	47	275	-60	wr644	20500	11100	415	32	275	-60	wr688	17300
wr596	21100	14125	415	53	270	-60	wr645	20500	11150	415	40	275	-60	wr689	17300
wr597	21100	14099	415	44	270	-60	wr646	20500	11200	415	55	275	-60	wr690	17300
wr598	21100	14077	415	60	270	-60	wr647	19400	14240	415	55	270	-60	wr691	17300
wr599	19700	14250	415	72	270	-60	wr648	19400	14220	415	55	270	-60	wr692	17300
wr600	19700	14214	415	72	270	-60	wr649	21700	14100	415	58	275	-60	wr693	17300
wr601	19700	14178	415	39	270	-60	wr650	21700	14075	415	52	275	-60	wr694	17300
wr602	19700	14159	415	30	270	-60	wr651	21700	14050	415	42	275	-60	wr695	16700
wr603	19700	14286	415	72	270	-60	wr652	21700	14025	415	24	275	-60	wr696	16700
wr604	20100	14850	415	48	275	-60	wr653	21700	15000	415	30	275	-60	wr697	16700
wr605	18500	14250	415	40	275	-60	wr654	21700	15100	415	34	275	-60	wr698	16700
wr606	18500	14300	415	51	275	-60	wr655	21700	15050	415	22	275	-60	wr699	16700
wr607	18500	14350	415	48	275	-60	wr656	21000	11300	415	37	275	-60	wr700	16500
wr608	18500	14400	415	30	275	-60	wr657	21000	11325	415	45	275	-60	wr701	16500
wr609	16500	14600	415	51	275	-60	wr658	21000	11350	415	30	275	-60	wr702	16500
wr610	16500	14650	415	54	275	-60	wr659	21000	11275	415	37	275	-60	WRD001	19300
wr611	16500	14700	415	22	275	-60	wr660	20950	11200	415	54	275	-60	WRD002	20001
wr612	14100	15220	415	63	275	-60	wr661	20950	11150	415	47	275	-60	WRD003	20200
wr613	14100	15400	415	65	275	-60	wr662	21700	15085	415	34	275	-60	WRD004	20197
wr614	19700	14149	415	58	270	-60	wr663	20900	15062	415	58	275	-60	WRD005	20004
wr615	19500	14175	415	11	270	-60	wr664	20900	15150	415	30	275	-60	WRP001	19301
wr616	19500	14200	415	46	270	-60	wr665	20100	15000	415	33	275	-60	WRP002	19301
wr617	19500	14225	415	52	270	-60	wr666	20100	14800	415	33	275	-60	WRP003	19300
wr618	19500	14165	415	58	270	-60	wr667	19300	15000	415	61	275	-60	WRP004	19300
wr622	19500	14188	415	52	270	-60	wr668	19300	14900	415	32	275	-60	WRP005	19700
wr623	19600	14175	415	70	270	-60	wr669	19300	14950	415	50	275	-60	WRP007	20900
wr624	19600	14200	415	50	270	-60	wr670	18500	14500	415	34	275	-60	WRPOOR	20500
wr625	19400	14200	415	50	270	-60	wr671	18500	14550	415	34	275	-60	WPDOOD	20300
wr626	19300	14225	415	57	270	-60	wr672	18500	14450	415	35	275	-60	WPD010	20000
wr627	19300	14200	415	55	270	-60	wr672	18500	14200	415	34	275	-60	WPD011	19700
wr620	10200	14200	415	55	270	-00	wr674	16000	1000	415	42	275	-00	W/PD012	10200
WIDZÖ	19200	14250	415	UO	270	-00	wro/4	10900	12020	415	42	2/5	-00	VVRP012	19300

wr688	17300	14309	415	64	275
wr689	17300	14341	415	68	275
wr690	17300	14375	415	59	275
wr691	17300	14405	415	46	275
wr692	17300	14428	415	52	275
wr693	17300	14454	415	52	275
wr694	17300	14480	415	51	275
wr695	16700	14400	415	82	275
wr696	16700	14441	415	70	275
wr697	16700	14476	415	34	275
wr698	16700	14493	415	48	275
wr699	16700	14517	415	58	275
wr700	16500	14411	415	3	275
wr701	16500	14428	415	2	275
wr702	16500	14456	415	60	275
WRD001	19300	9926	415	147	267.4
WRD002	20001	10001	415	207	270
WRD003	20200	9950	413	160	270
WRD004	20197	10048	415	213	270
WRD005	20004	9916	416	163	270
WRP001	19301	9723	414	81	270
WRP002	19301	9750	414	81	270
WRP003	19300	9770	414	96	270
WRP004	19300	9890	415	81	270
WRP005	19700	9854	415	81	270
WRP007	20900	10823	415	105	275
WRP008	20900	14122	415	61	270
WRP009	20900	14148	415	111	270
WRP010	20900	14090	415	63	270
WRP011	19700	9991	415	81	270
WRP012	19300	9831	415	99	270

14500

14550

15100

14408

14435

15170 415

15135 415

14300 415

14326 415

14340 415

14366 415

14386 415

14473 415

415

415

415

415

415

8 275

275

34

57 275

22 275

17 275

52 275

28 275

52 275

40 275

42 275

54 275

78 275

275

67

-60

-60

-60

-60

-60

-60

-60

-60

-60

-60

-60

-60

-60

-60

-60

-60

-60

-60

-60

-60

-60

-60

-60

-60

-60

-60

-60

-60

-60

-60

-60

-60 -60

-60

-60

-60

-60 -60

-60 -60

-60

-60

-60

-59.6

21 March 2017

WRP013	19200	9804	414	81	270	-60
WRP014	20900	10926	415	93	275	-60
WRP015	20900	10777	415	99	275	-60
WRP016	19200	9829	415	85	270	-60
WRP017	19300	9800	414	81	270	-60
WRP018	19314	9738	414	102	180	-60
WRP019	19285	9810	414	99	360	-60
WRP020	20699	9687	412	83	270	-60
WRP021	20498	9791	413	89	270	-60
WRP022	20300	9836	413	72	270	-60
WRP023	20098	9790	413	71	270	-60
WRP024	20700	14135	415	93	270	-60
WRP025	19258	9811	415	79	360	-60
WRP026	19301	9863	415	78	270	-60
WRP027	19250	9749	414	50	0	-90
WRP028	19250	9800	414	70	0	-90
WRP029	19250	9849	414	82	0	-90
WRP030	19250	9899	415	82	0	-90
WRP031	19350	9750	414	58	0	-90
WRP032	19350	9799	415	72	0	-90
WRP033	19351	9849	415	72	0	-90
WRP034	19350	9899	415	82	0	-90
WRP035	20100	9815	413	76	270	-60
WRP036	20299	9861	413	76	270	-60
WRP037	19325	9824	415	64	247.7	-88.9
WRP038	19249	9723	414	52	0	-90
WRP039	20499	9815	413	81	270	-60
WRP040	20403	9814	413	81	270	-60
WRP041	20200	9814	413	75	270	-60
WRP042	20600	9789	413	78	270	-60
WRP043	19402	9824	415	57	0	-90
WRP044	20200	9789	413	58	270	-60
WRP045	20000	9799	414	93	270	-60
WRP046	19899	9797	416	97	270	-60
WRP047	20148	9797	413	75	270	-60
WRP048	20243	9801	413	70	270	-60
WRP049	20700	10475	415	80	270	-60
WRP050	20800	10470	415	70	270	-60
WRP051	20152	9746	413	51	270	-60
WRP052	20053	9750	414	57	270	-60
WRP053	20000	9747	415	67	270	-60
WRP054	19999	9699	414	50	270	-60
WRP055	19996	9649	413	52	270	-60
WRP056	20199	9750	413	46	270	-60

WRP057	20150	9771	413	62	270	-60
WRP058	20600	10620	415	34	275	-60
WRP059	20149	9851	413	99	270	-60
WRP060	20199	9864	413	96	270	-60
WRP061	20050	9799	414	85	270	-60
WRP062	19900	9925	415	96	270	-60
WRP063	19899	9679	414	85	270	-60
WRP064	19800	9920	415	81	270	-60
WRP065	19700	9910	415	75	270	-60
WRP066	19850	9680	415	79	270	-60
WRP068	20298	9605	413	75	270	-60
WRP069	19500	14210	415	80	270	-60
WRP070	19600	14215	415	85	270	-60
WRP071	19700	14193	415	110	270	-60
WRP072	19800	14182	415	80	270	-60
WRP073	19223	9735	414	75	360	-60
WRP074	19270	9735	414	50	0	-90
WRP075	19304	9810	415	55	360	-60
WRP076	19259	9774	414	69	360	-60
WRP077	19255	9849	415	65	3.61	-60.7
WRP078	19301	9850	415	69	360	-60
WRP079	19500	14198	415	60	270	-60
WRP080	19500	14222	415	93	270	-60
WRP081	20800	11050	415	102	275	-60
WRP082	20900	11050	415	129	275	-60
WRP083	19260	9749	414	60	0	-90
WRP084	19276	9724	414	55	0	-90
WRP085	19258	9773	414	60	0	-90
WRP086	19281	9789	415	60	1.65	-89.3
WRP087	19324	9793	414	60	0	-90
WRP088	19325	9774	414	60	0	-90
WRP089	19340	9809	415	60	300.7	-88.1
WRP090	19315	9829	415	60	149.8	-89.6
WRP091	19335	9833	415	60	292.3	-89.4
WRP092	19280	9750	414	60	104.1	-89.4
WRP093	20950	11360	415	110	275	-60
WRP094	20950	11050	415	117	275	-60
WRP095	20750	11120	415	117	275	-60
WRP096	20790	11000	415	105	275	-60
WRP100	19270	9850	415	65	0	-90
WRP101	19295	9850	415	60	0	-90
WRP102	19290	9830	415	65	239.1	-89.7
WRP103	19345	9830	415	60	297.4	-89.8
WRP104	19270	9810	415	65	0	-90

WRP105	19331	9810	415	50	0	-90
WRP106	19340	9790	414	60	0	-90
WRP107	19310	9790	414	60	0	-90
WRP108	19281	9730	414	55	0	-90
WRP109	19258	9730	414	55	0	-90
WRP110	19235	9750	414	60	0	-90
WRP111	19270	9750	414	60	0	-90
WRP112	19308	9729	414	55	0	-90
WRP113	19273	9770	414	60	0	-90
WRP114	19295	9770	414	60	40.88	-89.4
WRP115	19900	9875	415	70	266.3	-59.9
WRP116	19901	9899	415	80	262.3	-60
WRP117	19950	9753	416	70	269.9	-60.5
WRP118	19949	9800	416	90	269.9	-60.1
WRP119	19999	9677	415	50	266.8	-59.7
WRP120	20000	9726	415	65	266.5	-58.7
WRP121	20001	9779	415	80	266.9	-60.1
WRP122	20050	9778	415	75	266.3	-60
WRP123	20100	9766	413	60	268.8	-60.2
WRP124	20100	9840	415	80	265.9	-60.5
WRP125	20148	9821	413	85	266.9	-60.7
WRP126	20199	9769	413	50	265.3	-60.5
WRP127	20199	9850	413	85	269.3	-60.9
WRP128	19260	9711	414	60	19.99	-89.5
WRP129	19285	9710	414	60	0	-90
WRP130	19314	9710	414	60	210.4	-89.7
WRP131	19310	9750	414	60	258.6	-89.2
WRP132	19289	9750	414	60	272.9	-89.8
WRP133	19310	9770	415	60	227.6	-89.6
WRP134	19265	9790	415	60	112.7	-89.5
WRP135	19295	9791	414	60	131.9	-89.9
WRP136	19355	9830	415	60	225.6	-89.4
WRP137	19391	9810	415	60	131.4	-89.5
WRP138	19340	9850	415	60	247	-89.5
WRP139	19320	9870	415	60	88.36	-89.2
WRP140	19280	9869	415	100	112.9	-89.4
WRP141	19601	9852	415	70	269.4	-60
WRP142	19601	9903	416	70	266.7	-60.3
WRP143	19601	9950	416	70	268.6	-60.6
WRP144	19601	10004	417	70	268.1	-60
WRP145	19502	9897	415	70	267.1	-59.7
WRP146	19500	9947	416	70	268.2	-60.4
WRP147	19500	10000	417	70	269.4	-59.9
WRP148	19401	9872	416	70	330.4	-89.3

21 March 2017

W/PD1/0	10/00	0773	115	70	88.25	-80 0
WINF 145	15400	5775	415	70	00.25	-05.5
WRP150	19380	9829	415	70	204.1	-89.2
WRP151	19380	9848	415	70	99.36	-89.9
WRP152	19360	9870	415	70	15.93	-88.5
WRP153	19340	9869	415	70	1.27	-89.3
WRP154	19240	9868	415	90	103.1	-90
WRP155	19240	9826	415	80	240.6	-90
WRP156	19238	9787	414	75	162.6	-89.6
WRP157	19100	9746	414	70	267.6	-60.3
WRP158	19099	9795	415	70	264.4	-59.9
WRP159	19100	9846	415	70	269.3	-59.2
WRP160	19101	9896	415	70	269.9	-59.4

WRP161	19450	14200	415	80	265.9	-60.5
WRP162	19451	14220	415	88	267.6	-60.2
WRP163	19451	14241	415	80	268.5	-60.1
WRP164	19551	14183	415	80	268.4	-60.2
WRP165	19551	14204	415	80	266.9	-60.9
WRP166	19551	14224	415	80	270	-60
WRP167	19601	14190	415	60	267.2	-58.9
WRP168	19601	14205	415	80	267.8	-60.4
WRP169	19651	14190	415	80	268.9	-60.2
WRP170	19651	14209	415	80	264.9	-60.3
WRP171	19652	14230	415	80	266.6	-61.3
WRP172	19701	14169	415	60	267	-60.5
WRP173	19701	14183	415	80	266.6	-61.3

					the second second	
WRP174	20101	14126	415	60	267.7	-60.4
WRP175	20100	14136	415	70	269	-60.7
WRP176	20602	14103	415	80	265.8	-60.7
WRP177	20603	14123	415	80	267.9	-59.5
WRP178	20603	14143	415	80	266.1	-60.6
WRP179	20603	14163	415	80	268	-60.1
WRP180	20701	14111	415	81	266.9	-60.1
WRP181	20701	14127	415	85	269	-59.8
WRP182	20800	14102	415	80	265.3	-59.8
WRP183	20801	14122	415	80	266.8	-61.2
WRP184	20800	14141	415	80	266.1	-60.6
WRP185	20800	14163	415	80	264.7	-60.8

ASX: CLZ ACN 119 484 016

21 March 2017